Phần 1 tài liệu Tuyển chọn 500 bài tập Toán 10 giới thiệu các bài tập theo chuyên đề thuộc phần Đại số bao gồm: Tập hợp và hàm số, phương trình và bất phương trình bậc nhất một ẩn, hệ phương trình bậc nhất hai ẩn, bất đẳng thức,... Mời các bạn cùng tham khảo nội dung chi tiết.
Trang 1P=^7 M A U T H O N G - L E M A U T H A O
500 bai t$p TOAlV 10
THLf VIEW TJNH biNH THUAN
N H A X U A T B A N H A N Q I
Trang 2LCfl N O I D A I I
500 b a i t o a n loTp 10 dUcrc s o a n t h e o c a c y e u c a u :
B a m sdt s a c h giao k h o a h i e n h ^ n h
Cdc k i e n thufc ca hAn difcfc tap t r u n g vao tifng c h u y e n de
Trong moi chuyen de, chiing toi t o m li/cfc phan h' thuyet, chi r a c&ch
van d u n g l i thuyet vao cAc bai tap tis d& den k h o , n a n g cao d a n theo
htfdng tiep can miJc do cac de t h i tuyen sinh Dai hoc, t r i c h d a n v a
giai mot so de t h i tuyen sinh Dai hoc cac n a m 2002, 2003, 2004
D a c bi^t, trUdc m o i b a i g i a i , chiing toi dua ra p h a n hiTdng dSn, p h a n
n a y h e t siJc quan trong, no giiip b a n doc t i m duoc hiidng giai quyet
b ^ i t o a n , torn t ^ t qua t r i n h giai, de k h i giai xong b a n chi c a n n^m
difoc c a c y c h i n h la dii
Sdch dugc chia lam hai phan :
Phan 1 : D a i so (300 bai)
Phan 2 : H i n h hoc (200 bki)
Sau m o i p h a n , chiing toi c6 p h a n toan tdng hop n h ^ m giiip 'hoc s i n h
on l a i cac k i e n thiJc ccf b a n , tap t r a Idi cac cau h o i tr^c n g h i e m
D&t bi^t : Cuoi s a c h c6 10 de k i e m t r a n h k m giiip hoc s i n h t\i d a n h
gid v a k i e m t r a l a i cac k i e n thiJc d a hoc trong moi hoc k i
M6i de kiem tra c6 :
Cau h o i li thuyet
Cau hoi trftc n g h i e m
Toan t u luan
M a c dii da CO gSng n h i e u k h i b i e n s o a n , nhitog c h ^ c k h o n g t r a n h
k h o i t h i e u sot, chiing toi mong n h a n dufoc sU dong gop y k i e n xay
diTng ciia quy dong nghiep, cac e m hoc s i n h de Ian t a i b a n sau, s a c h
Chuyen de 6 Phifong t r i n h b§c hai mot an 66 Chuyen de 7 He phuong t r i n h bac hai doi xufng doi vdi x va y 78
Chuyen de 8 He phuong t r i n h d i n g cap bac hai 84 Chuyen de 9 Dau ciia t a m thiic bac hai 89 Chuyen de 10 Bat phiTOng t r i n h bac hai 98 Chuyen de 11 Xac dinh gia t r i ciia t h a m so m de tam thilc bac hai
CO dau khong thay d6i 109 Chuyen de 12 So sanh so a vdi hai nghiem ciia phuong t r i n h bac hai 113
Chuyen de 13 Phirorng t r i n h va bat phuong t r i n h c6 chiJa gia t r i tuyet doi
129 Chuyen de 14 Phifcfng t r i n h v^ bat phucrng t r i n h c6 chufa cSn thufc 137 Chuyen de 15 Tdng hop cudi nam 153
^ h ^ n HiNMHOC
Chuyen de 1 Vecto • 172 Chuyen de 2 True - Toa dp t r e n true 188 Chuyen de 3 He true toa dp Descartes vudng goc 194
Chuyen de 4 T i so luong giac 209 Chuyen de 5 Tich v6 hudng ciia hai vectP 222
Chuyen de 6 He thiic lupng trong t a m giac 235 Chuyen de 7 Giai t a m giac - f n g dung thifc te 244 Chuyen de 8 He thiJc lUcJng trong di/dng t r o n 250 Chuyen de 9 Tdng hop cudi nSm 256
DQ k i e m t r a 290
De k i e m t r a Hoc k i I 290
De k i e m t r a Hoc k i I I va cuoi n a m
3
Trang 3c i H y 6 n 1 T6P HOP V6 HflM so
Kien thurc ca ban
I) Tap x a c djnh c u a ham s o y = f(x)
• Tap xac dinh ciia h a m so' y = f(x) la : D = |x e R \ f( x ) c 6 n g h i a )
• Cach t i m tap xac dinh ciia h a m so'y = f(x)
BU<Jc 1: T i m d i l u kien ciia x (x e R) de f(x) c6 nghIa
(f(x) duac xac dinh)
• BtfdTc 2 : Viet dieu kien t r e n difdi h i n h thdc tap hop
Q(x) > 0
II) Ti'nh ddn dieu c u a ham s o
Cho h a m so' y = f(x) xac dinh t r e n khoang (a; b) va X i , X2 e (a; b)
H a m so' y = f(x) dong bien tren H a m so' y = f(x) nghich bien tren khoang (a; b) k h i : khoang (a; b) k h i :
X ] < X 2 = > f(X]) < fiXa) X] < X 2 f(Xi) > f(X2)
H a m so' y = f(x) don dieu tren khoang (a; b) k h i va chi k h i ham so
y = f(x) dong bien hoac nghich bien t r e n khoang (a; b)
C a c h khao sat tinh ddn dieu cua ham so
• Bi^drc 1: T i m tap xac dinh D, lay x,, X 2 £ D, t i n h y j = f(xi) va y 2 = f(x2)
• Elide 2 : T i n h y i - y 2 theo x i va X2
• BUoTc 3 : Cho x i < X2 <=> X] - X 2 < 0
• Neu y i - y 2 < 0 hay y i < y 2 : H a m so dong bien t r e n khoang (a; b)
• Neu y i - y 2 > 0 hay y i > y 2 : H a m so nghich bien tren khoang (a; b)
5
Trang 4ni) T i n h c h i n 1^ c u a mQt h a m s o
Gia sii h a m so y = f(x) c6 tap xac dinh D thoa man d i l u kien
V x , x e D = > - x e D (Ta bao D la tap doi xiing qua O)
\
y
O
a < 0 [b = 0
b) Neu a = 0 thi y = b la h a m so' h k n g v a do t h i la dudng t h i n g eung
phLfOng vdi true h o a n h Ox (Ta bao h a m so' h i n g c6 do t h i l a dudng
• Dong bie'n t r e n khoang (0; + » )
• Nghieh bie'n t r e n khoang (- oo; 0)
a < 0
H ^ m so (1) :
• D6ng bie'n t r e n khoang (- oc; 0)
• Nghieh bie'n t r e n khoang (0; +
• D 6 t h i la mot parabol c6 :
D i n h S(0 ; c)
- True doi xiJng 1^ Oy
7
Trang 5a > 0 2) D a n g y = a x % bx + c (a ^ 0) (2)
B a i 1 a) Cho t^ip A c6 n phan tiif (n S: 1) Chtfng minh A c6 2" t^p con
b) Cho A = |1, 2, 3, 4, 5, 6| Gpi B la tgp con ciia A sao cho B chiiTa 1
ma khong chuTa 2 Hoi c6 bao nhieu tap B ?
• Ta CO P ( l ) diing vi neu A c6 mot phan tilr t h i A c6 2^ = 2 tap con, do
la tap 0 va A ,,
• Gia sii menh de P(n) diing k h i n = k (k > 1, k e N) ta chuTng minh P(n) diing k h i n = k + 1
- T h a t vay, k h i A c6 k p h i n tiJf, ch^ng han : A = Au = |ai, a2, , aki
t h i A CO 2^ tap con, dp la | |, |ail, |a2l, , |ai, 32, , aiJ
Do do k h i A diioc them mot phan tiir (au + i ch^ng han) t h i A c6 t h # m 2'' tap hop con bfing each them phan tuf ak + 1 vao cac tap con n6i tren, do la |au + 1), |ai, ak + i l , , l a i , a2, , ak, ak + i l
Vay so' tap B = so tap con ciia A' = 2^ = 16
B a i 2 Cho bleu thii-c T = J^J— +
• Chu y : a^ = a ^ va (x - y)^ = x^ - 2xy + y^
T xac dinh k h i mau ^ 0
Trang 7• y - - 6y + 8 = 0 " y = 2 => x = 3
y = 4 i ^ y : - 3
D a p so : B(3 ; 2) va C(~ 3 ; 4)
Phiicfng t r i n h ( A B ) c6 d a n g y = k x + b, ( A B ) qua A d ; 6) v a B ( 3 ; 2) [6 = k + b
x > 0 ) D a p so': C(3; 0)
131
Trang 8a) Giai giong bai 3
b) So nghiem ciia phijang t r i n h l a so giao diem ciia do t h i h a m so da
b) T r e n k h o a n g (0 ; 2) h a m so' (1) t S n g h a y g i a m
HUcfng d&n
a) Dat f(x) - T i m tap xac dinh D cua h a m so
T i n h f(-x) theo x r o i so sanh f(-x) v^ f(x)
b) Lay x i , X2 e (0 ; 2), t i n h y i = f(xi) v^ y2 = f(x2) roi t i n h y i - y2
Cho x i < X2 r o i t i m dau cua y i - y2
Ta CO X e [- 2; 21 - X e [ - 2 ; 21
• f(-x) = ^2 + (-x) + ^2 - (-x) = 72 - X + 72 + X = fix) Vay h a m so (1) l a h a m so chSn nen do t h i c6 true doi xu'ng l a true tung (dpcm)
Trang 9Hai duang thing (d) : y = ax + b va (d') : y = a'x + b'
• (d) va, (d') cdt nhau o a ^a'
Vdri m * 4 t h i d i , da, ds t a o t h a n h t a m giac A B C v u o n g t a i A ( - 1; 2)
B a i 12 T r o n g m a t p h S n g toa dp, cho A( ^ 3 ; 2), B(0; 1) v a difcfng t h S n g (d) :
Trang 10Cho (P) qua diem (- 4; 5) => => a =
=> T a m gi^c OBO vuong can t a i 0(0; 0)
B a i 14 Trong mSt p h i n g tpa dp Oxy, cho parabol (P) : y = ax^ + bx + c co
dinh S(2; - 1) va cdt true tung tai diem C c6 tung dp yc = 3
a) Tinh a, b, c
b) T r e n (P) lay diem A c6 hoanh dO XA = 3
Chtfng minh tam giac SAC vuong va tinh chu vi tam giac S A C
• HU&ng d&n
a) * 0(0; 3) e (P) nen • » c = 3
_b_ - b ' + 4ac' 2a
b) Tim diem I tren true tung sao cho chu vi tam giac l A C dat gia tri nho nha't
K i e n thufc c d b ^ n Cho hai diem A, B va difofng thdng (d) Tim diem M tren (d) sao cho
MA + MB ngSn nha't
A
• Trifdng hpp 1 : A va B d hai phia doi vdfi (d)
• M A + M B > AB (hang so) Vay m i n ( M A + M B ) = A B M = MQ (Mo la giao diem ciia AB va (d))
• Tri/cfng hpfp 2 : A va B of cung mpt phia doi vdri (d)
• Gpi A' la diem do'i xiJng ciia A qua (d)
Trang 11( A ' C ) eat t r u e t u n g t a i d i e m Io(0 ; 13
D a p so :
I e Oy v a c h u v i t a m g i a c l A C n h o n h a t
B a i 16 T r o n g m a t p h S n g toa dp, cho ba d i e m : M ( - l ; 1), N(4; - 2 ) , P ( l ; 3)
a) T i m d i e m I t r e n true t u n g sao cho I M + I N n g a n n h a t
b) T i m d i e m J t r e n true h o a n h sao cho J M + J P nho n h a t
Trang 12• Dung cong thilc I a I =
- a neu a < 0 de l a m mat dau t r i tuyet doi ciia (1)
• Khao sat h&m so' y = ax + bx + c trong moi triTdng hop
-1*. - 1 ^
+ 00
Trang 13Phi/cfng trinh (^'^) c= m = - x^ + 2| x I : day la phiTOng trinh hoanh do
giao diem ciia do thi ham so y = - x % 2| x I va dtromg thfing y :r ni
24
l i a i 23 T i m t r e n do thi (P) cvia h a m so y = - + 4x h a i d i e m A v a B sao
cho A B c u n g phifofng vtJi true h o a n h v a dp d a i doan t h ^ n g A B = 6
• HUcfng d&n
• A B ciJng phuang v d i Ox nen yA = y n = m : A(X] ; m), B(X2 ; m)
• A , B G (P) nen m = - x^ + 4 x i ni = - x.^ + 4 x 9
=> X i , X2 la nghiem phuang trinh m = - x^ + 4x h a y x~ - 4x + m = 0
• A B " = ( x i - X2)'^ + (m - m)^ = ( d u n g dinh l i V i e t do'i v d i phiWng
trinh bac h a i )
G I A I
• V i A B cijng phycfng v d i O x nen y ^ = y g = m : A ( x i ; m), B(X2 ; m)
• A , B e (P) nen m = - x ^ + 4x] va m = - x^ + 4 x 2
=> x i * X 2 la nghiem phuang trinh m = - x" + 4x h a y x" - 4x + m = 0 (")
• D i e u kien de phifong trinh C*) c6 h a i nghiem phan biet X i , X2 l a
Trang 14Do t h i la parabol (P) c6 dinh S{- 2; - 1), true doi xufng x = - 2, cSt
cac true toa do t a i (0; 3), (- 1; 0), (- 3; 0)
b) B (XB; YB) va S ( - 2; - 1) doi xdng nhau A ( - 3; 1) nen A la trung diem
a) Khao sat suf big'n thien va ve do thi (P) cua ham so' y = - - 4x
b) Goi S la diem cijfc dai cua (P) Tim diem M e (P) sao cho I(- 3; 2) la
trung diem doan thSng SM
ChuTng minh rSng A, B, S i , S2 la bon dinh cua mpt hinh vuong
• Hiic/ng dan
• T i m toa do Si va S2 DCing cong thufc S
T i m toa do A va B : Giai h? phUcfng t r i n h
2a 4a, [(Pi)
[(Pa)
Chu-ng m i n h tut giae A S 1 B S 2 c6 hai dudng cheo A B va S1S2 : b^ng
nhau, vuong goc nhau, eo chung mpt trung diem
Trang 15B a i 28 Trong mat phang toa dp Oxy cho hai parabol ( P , ) : y =
( P 2 ) : y =
x'^ + 4x
X - 4x Chu"ng minh rang hai dinh ciia ( P i ) va ( P 2 ) cung vofi hai giao diem
ciia ( P i ) va ( P 2 ) tao thanh mpt hinh thoi
^ Hii&ng ddn ' Giai gio'ng bai 27
Dap so : S i ( - 2 ; - 1), S 2 ( - 2 ; 1), A ( - 4 ; 0), 0(0; 0)
B a i 29 Trong mat phSng toa dp Oxy, cho hai parabol :
( P , ) : y = - 2mx + + 2
( P 2 ) : y = - x ^ - 6mx - 9m^ + 2
a) Chii'ng minh rang cac dinh S i va S 2 ciia ( P i ) va ( P 2 ) cung (i trc^n
mpt duong thiing co dinh
b) Xac dinh m de S i , S 2 va 0(0; 0), A(0; 4) la bo'n dinh ciia mpt hinh
thang can day OA va S 1 S 2 nhifng khong phai la hinh chu" nhat
• HU&ng ddn
• T i m toa do S i , S2 ta se thay ket qua
• T r u n g trirc ciia doan thfing OA cat duo'ng thSng (SiS^) t a i I , de bai
thoa man k h i I la t r u n g diem ciia 8182 dong thdi 8182 ^ OA
a) Khao sat sii bien thien va ve do thi ( P ) ciia ham so y = x^ + 4x - 5
b) ( P ) cat true hoanh tai A va B (XA < 0) DUcfng thSng y = - 5 cat ( P ) tai C va D ( X D < 0) Chiing minh rang ABCD lal hinh thang can
HU&ng ddn
• T i m toa do A va B (giai phiTcfng t r i n h + 4x - 5 = 0)
• T i m toa do C va D (giai phuong t r i n h x" + 4x - 5 = - 5)
Chilng m i n h AB va CD co chung mot dUdng t r u n g trUc va A B 1^ CD
Dap so : A ( - 5; 0), B ( l ; 0), C(0; - 5), D ( - 4; - 5)
PhUo'ng t r i n h dudng t r u n g trUc chung cua AB va CD la x = ~ 2
X = - 2
0 0
Trang 16C h u y e n d « 2
PhiTofng t r i n h v a bat phufoTng t r i n h b a c n h a t mpt a n
Phiidng trinh bac n h a t :
(Hoc sinh can phan biet sir khac
phuong t r i n h bac nhat)
Bat phadng trinh bac nhat ;
( c h u y : chia hai ve cho so' diicfng
t h i bat philcfng t r i n h khong doi chieu, chia hai ve cho so am t h i bat phucfng t r i n h doi chieu)
* A = 0 liic do bat phi/cfng t r i n h tror
t h a n h 0.x > B, 0.x > B, 0.x < B, 0.x < B
- Tuy theo dau cua B va dau bat dang thiJc ta duac tap nghiem ciia bat phucfng t r i n h la S = R hoac
S = 0
M e n h de Chan t r i 0.x >, < 0 Sai 0.x > < 0 Dung 0.x >, > so dacfng Sai 0.x <, < so diicfng Diing 0.x >, > so am Dung 0.x <, < so' am Sai
Giai giong bai 31 ta c6 : n i ( m + 2 ) x = ( m + 2 ) ( m - 2 )
m Tap nghiem ciia phiicfng t r i n h
Trang 17<=> x^ + 2 m x + m^ + 1 0 m + 6 = 5 ( m ^ + 2 m + 1) + x^ - x
o ( 2 m + l ) x = 4 m ^ - 1 = ( 2 m + l ) ( 2 m - 1) Phifcfng t r i n h c6 t a p n g h i e m S ^ R v a S # 0 ( n g h i a l a phUcfng t r i n h
Trang 18B a i 36 Giai v a b i ^ n l u ^ n theo m b a t phi^oTng t r i n h :
• 2 - m > 0 o m < 2 ; bat phacfng t r i n h c6 nghiem x > - (m + 2)
• 2 - m < 0 o m > 2 : bat phaang t r i n h c6 nghiem x < - (m + 2)
• 2 - m = 0 o m = 2 : ba't phaong t r i n h C'') t r d thanh 0.x > 0 : v6 nghiem
B a i 37 Tuy theo a, giai va bi§n lugin bat phifcfng trinh :
2(a - 1) + (x + 1)^ < a^d - x) + 3(a - 1 + X) + x^ (1)
CO. (a - l)(a + l)x ^ (a - l)(a + 2) (*)
• Trifdng h^p 1: a^ - 1 > 0 o I a I > 1, luc d6 bat phacfng t r i n h (*)
Trang 19= be' - b'c, Dy = c a = ca' - c'a
Trang 20• T r i f d n g hdp I : D Q c : > n i ; t ± l , he phiTOng t r i n h c6 n g h i e m
m duy n h a t
X =
D D„
• Trircfng hop 1 : D 0 (khong xet D^, Dy)
• Trifdng hcfp 2 : D = 0 (xet D^, Dy)
a'x + b'y + c' = 0 CO nghiem
Trang 21(qi - q2)^ + (pi - P2)(piq2 - P2qi) = o (*)
Can nhd: He phUang trinh
ax + by + c = 0 a'x + b'y + c' = 0
C o n g (4), (5), v a (6), t a c6 : a^ + b^ + c^ = = ab( ) + bc( ) + ca( )
Trang 22B a i 50 Chu'ng minh h$ phi^cfng trinh : a x - y - 2 a + l = 0
3x +(a - 2)y + a - 3 = 0 luon CO nghi$m
X X
a b 3) a.x < b.x ; — < — neu x < 0
Trang 23C^c phiromg pbAp gial bai loan bat dAng thurc
• SiJf dung cac kien thiJc cd ban de chuTng m i n h mot bat dSng thufc
• ' Suf dung bat d^ng thiJc Cosi ,
• iTng dung dau " = " xay ra de t i m gia t r i Idn nhat, gia t r i nho n h a t
ciia mot bieu thiic
• a, b la hai so tuy y, ta c6 : a' + b > 2ab (1)
• PhUdng phap tacfng ducfng
Muo'n chijfng m i n h bat d^ng thufc (1) dung ta c6 the t i e n h a n h n h u sau :
BrfdTc 1 : T i m bat d^ng thiJc tirang difang
Bat dang thufc (1) o o o bat d i n g thilc (2)
BrfdTc 2 : Chufng m i n h bat d^ng thiic (2) dung, tii do ket luan bat
d i n g thufc (1) diing
Chii y :
Bat d i n g thufc (2) hoSc d i thay dung, hoSc la bat d i n g thufc thudng
gap, hoac dung nh6 phu hcfp vdi gia thie't
B a i 51 Chufng minh rfing v6i nam so' a, b, c, d, e bat ki, bao gid ta cung
'=> Bat d i n g thufc (2) dung
=> Bat d i n g thiJc (1) dung (dpcm)
y - z < 0
B a i 53 Cho a, b, c la cac dp dai cac canh ciia mpt tam giac
Chufng minh rkng : a^ + b^ + c^ < 2(ab + be + ca)
^ Hitdng dan
a, b , e > 0
• a, b, c la ba canh ciia mot t a m giac nen : < a < b + c => a^ < ab + ca
Cong ve theo ve cac d i n g thiifc t i m duac
45
Trang 24B a i 54 Chiifng minh rSng neu a i a 2 > 2(bi + b^) thi it nhat mpt trong hai
phUcfng trinh sau c6 nghipm :
+ aix + bi = 0 (1)
x'* + aax + ba = 0 (2)
• HUdng ddn
• T i n h biet so' Ai va A2 ciia hai phuang t r i n h
• Chufng m i n h Ai + A2 > 0 bkng each suT dung bat 'd^ng thufc
a^ + b'^ > 2ab roi suf dung gia thiet
Chii y : a + b > 0 => Trong hai so a, b c6 i t nhat mot so > 0
Trong so Aj va A2 c6 i t nhat mot so' khong am
=> Trong hai phiTcfng t r i n h c6 i t nhat mot phucfng t r i n h c6 nghiem
B a i 55 Chuing minh r^ng neu : I x I < 1, n la so nguyeii va n > 1 thi ta c6
bat dang thuTc : (1 - x)" + (1 + x)" < 2"
* HU&ng ddn
• 0 < a < 1 va n, p G N n > p a" < a"^
1 - X 1 + X
Biet so' cua phiicrng t r i n h
Tii gia thiet, chufng m i n h 0 < 1
Cong (1) va (2) ve theo ve ta c6 :
1 - x l 1 + X
< 1 o (1 - X ) " + (1 + X ) " < 2" (dpcm) •
B a i 56 a, b, c la dp dai ba canh ciia mpt tam giac
Chufng minh rdng : abc > (a + b - c)(a + c - a)(a + c - b)
• Chufng m i n h xy + yz + zx > - ^ b^ng each chii y :
Ve phai = - - + y^ + z'^), sau do bien doi bat dang thufc v l dang
2 (x + y + z)^ > 0
47
Trang 25o (2 + a'^ + b^)(l + ab) > 2(1 + a^)(l + b^) (vi ab > 1 nen 1 + ab > 0)
o 2 + a^ + b'^ + 2ab + a^b + ab^ > 2 + 2a^ + 2b^ + 2a^b^
o ab(a^ + b^ - 2ab) - (a^ + b^ - 2ab) > 0 « ab(a - b)^ - (a - b)^ > 0
Trang 26Nhinig 1 + V ^ l + Jab^ 1 + ^a'^b'^abc" 1 + abc 1 1 + 2
(theo ket qua phan 1)
=> B a t d i n g thufc (4) diing => Bat d i n g thiJc (3) diing (dpcm)
B a i 61 Cho 0 < a, b, c < 1 Chtfng minh rSng c6 it nhat mpt trong ba bat
d^ng thiic sau day sai :
64 (1)
• Gia siif ca ba bat d i n g thiic neu t r e n deu diing, tii do suy ra mot bat
d i n g thufc mau t h u i n vdi bat d i n g thiJc (1)
Trang 27Vay CO i t nhat mot trong ba bat dSng thufc da cho la sai
B a i 62 Cho a, b, c e [- 1; 2] thoa man dieu ki^n a + b + c = 0
<=> x^ + y^ + z^ < 5 - xyz < 5 (vi xyz > 0)
B a i 64 Cho a, b, c la ba so tuy y Chiifng minh :
S a i 65 a, b, c la dp dai ba canh ciia mpt tam giac va p la nijfa chu vi ciia
tam giac do ChuTng minh rdng :
abc a) (p - a)(p - b)(p - c) <
8 b) 1 - i - - l - 2
Trang 28b) TrUdc het, chufng m i n h rang vdi x > 0, y > 0 ta c6 :
N h a n ve theo ve cac bat dang thtrc (1), (2) va (3) ta dUdc :
p - a)" (p - hf (p - c)^ < z=> Bat d i n g thdc (i) dung (dpcm)
, Phan tich 3a^ + 7b^ = 3a^ + 3b^ + 4b^ r o i ap dung bat d i n g thufc
Cosi cho ba so khong a m 3a^ 3b^ 4b^ s
• Tir gia thi§'t, t i n h b theo a va c ,
• T i n h ve t r a i ciia bat dang thufc da cho theo a va c (thay b v t o t i n h vao ve t r a i ciia bat dang thufc da cho)
• SiJf dung bat dSng thufc Cosi doi vdi hai so diTcfng va
-55
Trang 29• Lan iMt ap dung :
Bat d4ng thdc Cosi cho ba so' difcfng :
B a i 69 C h o tam giac A B C c6 b a goc n h o n G p i H la trtfc tanj tam giac,
c h a n c a c dtTorng cao ke tU A, B , C l a n li^ort la A j , B j , C i
- A H B H C H ^ „ Chu-ng mxnh r a n g : ^ + ^ + ^ 6
K h i n a o thi da'u d S n g thiiTc x a y r a ?
1^ Hiidng ddn
• Bvtdc 1 : T i m bat dSng thiJc tUOng dircfng b^ng each liAi y : '
• H d m i l n trong tam giac ABC nen : A H = A A i - A i H
A H ^ A A i - A i H ^ A A ^ _ ^ ^ S,,ABC _ ^
A j H A j H A j H 5,\HBC Bien doi bat dSng thiJc da cho ve dang ;
B j H S, (Chu y S = Si + S2 + Sg) Vay bat dang thurc da cho
Trang 30Dau "=" xay ra o S i = S2 = S3 o Tarn gidc ABC la tam giac deu
Bai 70 Cho a, b, c> 0 Chiifng minh :
b + c > 4a(b + c)^ > 4a(2N/bcj^ => b + c > 16abc (dpcm)
Bai 72 Cho x, y > 0 va x + y = 1 Chtfng minh
59
Trang 31Cho hai so' x, y thay doi va thoa man dieu ki$n 0 < x < 3 v a 0 < y < 4
Tim gia tri idrn nhat cua bieu thuTc A = (3 - x)(4 - y)(2x + 3y)
• HUdng dan
• Viet l a i : A = ^ (6 - 2x) - (12 - 3y)(2x + 3y)
(Muc dich (3 - 2x) + (12 - 3y) + (2x + 3y) = hang so)
• Ap dung bat dang thuTc Cosi cho ba so' khong am, ta se c6 A < hSng so'
• Phan tich f t h a n h dang tong ciia ba so' A, B, C
• Sii' dung bat dang thiJc Cosi Ai chuTng minh A < hfing so', tiT do
tinh dUOc
fmax-G I A I
'a - 3 7 ^ - 4 Viet l a i
Ta CO (theo bat dang thilc Cosi : 4ah < a + b
* T i n h y^ va ap dung bat d i n g thiJc Cosi 2 Tab < a + b ta se chdng
m i n h dugc y^ < hang so (chii y : y > 0)
Trang 32b) PhLTOng trinh yjx - 2 + ^4 - x = x^ - 6x + 11 (*)
• Ve trai = - 2 + ^4 - x < 2 (DS'u = xay ra o x = 3)
• Ve phai = x^ - 6x + 11 = (x - 3)^ + 2 > 2 (Dau = xay ra o x = 3)
f(x) = 0<=>ax + b = 0 <P> X =
a c) Dau :
ax -f b (trai dau v d f i a) 0 (cung dau v c r i a)
Cdch nhd : Phai cung, trai trai
• Phufdng phap giai toan Xet dau n h i thufc bac nhat f(x) = ax + b
• T i m nghiem (giai phiTcrng t r i n h ax + b = 0) Lap bang xet dau
a + 00
ax + b trai dau vdi a 0 cung dau vdi a
• Ghi ket qua
B a i 79 Xet dau nhi thu-c a) f(x) = 2x - 3 b) f(x) = - 4 - 3x a) f(x) = 2x - 3 (a = 2 > 0)
c) f(x) = 1 - - X
2 d) f(x) = 2x + l GIAI
• Nghiem : 2 x 3 = 0 < z > x =
-63
Trang 33• Bang xet dau :
2 f(x) = - 4 3 x (a = - 3 < 0)
N g h i e m : - 4 3x = 0 <:> X : 4
3 Bang xet dau
2 2 Giai van t d t
Trang 34c h u y e n 6 PNcTONG T R I N M B ^ C net MpT en
Kien thufc cd ban
Phuang t r i n h bac hai : ax^ + bx + c = 0 ( a ; * 0 )
• Biet so' A = b^ - 4ac hoac A' = b'^ - ac (b' = — )
• a + b + c = O o Phifcfng t r i n h c6 hai nghiem
• a - b + c:=0 Phifdng t r i n h c6 hai nghiem
Gia sijf phuong t r i n h ax^ + bx + c = 0 c6 hai nghiem x i , X2
• Tong hai nghiem S = X i + X2 = - —
Trang 35(Hoc sinh tif ghi cac ket qua con lai)
ChuTng minh phUdng trinh b|ic hai iuon c6 hai nghiem
Vay phuang t r i n h luon c6 hai nghiem phan biet • X j = - m + 1
• X g = - m - 1
Tfnh gia trj cua tham so de phUdng trinh c6 nghiem l<ep va ti'nh
nghi?m kep ti/dng ufng
* Hudng ddn
• T i n h A ho&c A' (theo tham so)
• Phuong t r i n h c6 n g h i f m kep o A = 0 (hoac A' = 0)
Nghiem kep ciia phuong t r i n h la : X i = X2 = — ^ hoac x i = X 2 =
69
Trang 36Tinh nghiem con l a i
Xac dmh dieu kien cua mpt tham so de phUdng trinh bac hai c6
hai nghiem hoac vd nghl#m
Trang 37B a i 91 Cho phvtcfng trinh x'^ - 2(a + b)x + a'' + = 0
Tim s\i lien h$ giffa a va b de phvtdng trinh c6 hai nghi^m phan bi$t
• HU&ng ddn
A' = 2ab
A' > 0 <=> ab > 0 <=> a va b cung dau
Tinh gia tn c u a mpt bieu thufc doi xtifng doi vdi c a c nghiem x i , X2
c u a phi/dng trinh b a c hai : ax^ + bx + c = 0 {a^O)
E = x f + , E = X ? + , E = — + — ,
X i X2
B a i 92 Gia si3f phxfofng trinh x^ - (m - l)x + 2m + 1 = 0 c6 hai nghi^m x i , x^
Tinh cac bieu thufc sau theo m
• T i n h S va P roi thay vao bieu thufc E
• Chu y : a^ + b^ - (a + b)(a^ + b^ - ab) = (a + b)[(a + b)^ - Sab]
Chti y : Bai nay de khong yeu c l u xac dinh m de phiTofng t r i n h c6 hai
B a i 93 Cho phvLdng trinh (m + Dx" - 2(in - l)x + m - 2 = 0 (*)
a) Xac dinh m de phUdng trinh (*) c6 hai nghiem
b) Vdri nhu'ng gia tri nao ciia m thi phufcfng trinh (*) c6 hai nghi$m
xi, X2 thoa man : 4(xi + X2) = 7 x i X 2
b) Tim h $ thxJc giffa X i , X2 dQC l $ p doi vdi m
Trang 38B a i 95 Cho phUoTng trinh (m - l)x^ + 2(m + 2)x + m - 1 = 0 Tim m de :
a) Fhi/oTng trinh c6 dung mpt nghiem
b) Phtfcfng trinh c6 hai nghiem cung dau
* Hudng ddn
a) PhiTcfng t r i n h c6 dung rapt nghiem
r Phacfng t r i n h t r d t h a n h phiforng t r i n h bac nhat
B a i 96 Cho phUcfng trinh mx^ - 2(m - 3)x + m - 4 = 0 (*)
Xac dinh m de phifcfng trinh c6 dung mpt nghiem dUofng
• Hiidng ddn
Phuang t r i n h (*) c6 dung mot nghiem dircfng
Phircfng t r i n h (*) la phiicfng t r i n h bac n h a t c6 nghiem difomg (1)
Phiicfng t r i n h (*) c6 h a i nghiem t r a i dau (2) hoac c6 mot n g h i e m
va nghiem con l a i diTcfng (2')
- Phuang t r i n h (*) c6 nghiem kep duong (3)
Phucfng t r i n h (*) c6 mot nghiem x = 0 o m - 4 = 0 c : > m = 4 1
fx = 0 , Vdi m = 4 t h i phucfng t r i n h (*) la 4x^ + 2x^ = 0 o _ 1
~ '2
Vay m e n h de (2') k h o n g xay ra
9 •
Dap so : De bai thoa man < : = > 0 < m < 4 V m =
-Can nh& : Phuang trinh bac hai ax' + bx + c = 0 (a ^0) c6 hai nghiem
trai dau x i < 0 < xo P < 0 (hie do hien nhien A > 0 vi P = — < 0
a
B a i 97 Cho phtfc*ng trinh x^ - 2(m - 2)x + m(m - 3) = 0 (1) a) Xac dinh m de phifofng trinh (1) c6 hai nghiem phan bi$t X i , X 2 thoa
-b) Chiing minh rSng neu phifdng trinh tren c6 mpt nghiem dtfoTng la
xi thi phUoTng trinh : m(m - 3)x^ - 2(m - 2)x + 1 = 0 cung c6 mpt
1
n g h i $ m diicfng la —
X ,
75
Trang 39B a i 98 Cho phUorng trinh 2x^ - 2(m + l)x + m + 5 = 0 (1)
Xac dinh m sao cho phvTdng trinh (1) c6 hai nghiem xi, X 2 thoa man
B a i 99 Cho phirong trinh 3x^ - (2m + l)x - 2 = 0 (*)
a) Chiang minh phi^ofng trinh (*) luon c6 hai nghiem phan bi§t b) L 4 P phifofng trinh b^c hai c6 hai nghi$m ai, a2 thoa mSn aj
B a i 100 Cho hai phifcfng trinh : x^ + mx + l = O v a x ^ + x + m = 0
Xac dinh m de hai phifofng trinh c6 mpt nghiem chung
Trang 40x^ + y^ = (X + yXx^ - xy + y^) = (x + y)[(x + y)^ - 3xy|
i i 103 Giai h § phtfoTng t r i n h : X + y = 5
X * + y^ = 97 GIAI
xUy' = ix' + y^)^ - 2 x V '
Chii y : (xy) - 50(xy) + 264 = 0 l a mot phiicrng t r i n h bac hai a n so l a (xy)
Ta CO hai truomg hop :