Phần 1 Tài liệu Thiết kế bài giảng Đại số và Giải tích 11 nâng cao (Tập 2) các phương pháp thiết kế bài giảng về dãy số, cấp số cộng và cấp số nhân, giới hạn, giới hạn của dãy số. Mời các bạn cùng tham khảo nội dung chi tiết.
Trang 1TRAN VINH
NHA XUAT BAN HA NOI
Trang 3IRAN VINH
THIET KE BAI GIANG
DAI SO VA GIAI TICH
ir''-/ ".V.r' - •» It:
isiiirGCiAo
TAP HAI
NHAXUATBANHANOI
Trang 4THIET KE BAI GIANG DAI s d VA GIAI TICH 11 - NANG CAO - TAP HAI
PHAM QUOC TUAN
In 1000 cuon, tai Xf nghiep In ACS Viet Nann
Km 10 - Dudng Pham Van Dong - Kien Thuy - [Hai Phong
Giay phep xuat ban so: 208 -2007/CXB/46 m TK - 47/HN
In xong va nop luu chieu qu^ I nam 2008
Trang 5Cki/ONq III DAY SO
CAP SO CONG VA CAP SO NHAIN
Phan 1
I NOI DUNG
Noi dung chinh cua chuung III:
Phuong phap quy nap toan hoc: Dinh nghia, cac bu6c chiing minh bang phuong phap quy nap
Day so: Dinh nghla day so la gi ? Day sd hihi han va day s6' yo han, cong thiic tdng quat ciia day sd, cac phuong phap cho day sd, day sd tang, day sd giam va day sd hi chan
• Qip sd cdng : Dinh nghia, cdng sai, sd hang tdng qiiat, tinh ch&'t cac sd hang, tdng n sd hang dSu tien cua cap sd cdng
• Cap sd nhan : Dinh nghTa, cdng bdi, sd hang tdng quat, tinh chat cac sd hang, tdng n sd hang dau tien ciia ca'p sd nhan
II MUC TIEU
1 Kien thiirc
Nam duoc toan bd Icien thiic co ban trong chuong da neu tren, cu the :
- Biet chiing minh va nhan bie't khi nao sit dung phuang phap quy nap toan hoc Bidt tim cac sd hang tdng quat cua day sd; Chiing minh duoc day sd la day sd tang, giam, day sd bi chan
• Nam duoc Ichai niem va each nhan bie't mot day sd la ca'p sd cdng ; tim duoc
sd hang tdng quat va tinh tdng n sd hang dau tien cua mot ca'p sd cdng
Trang 6Nam duoc khai niem va each nhan bidt mot day sd la ca'p sd nhan ; tim duoc
sd hang tdng quat va tmh tdng n sd hang dSu tien cua mot ca'p sd nhan
tdng n sd hang d^u tien ciia cac ca'p sd do trong cac trudng hop khdng phiic tap ;
Bie't van dung nhiing kie'n thiic trong chuong de giai quye't cac bai toan cd lien quan dugc dat ra d cac mdn hoc khac, cung nhu trong thuc tiln cude sd'ng
3 Thai do
• Tu giac, tfch cue, ddc lap va chii ddng phat hien cung nhu ITnh hdi kie'n thUc trong qua trinh hoat ddng
• Can than chinh xac trong lap liian va tinh toan
Cam nhan dugc thuc teciia toan hoc, nha't la dd'i vdi day sd
Trang 7• Phuong phap va cac budc chiing minh quy nap
Khi nao thi van dung phuong phap quy nap
Giai thich dugc phuong phap quy nap
2 KT nang
Van dung thanh thao phuong phap quy nap trong giai toan
Bie't them mdt phuong phap chiing minh dd'i vdi bai toan cd lien quan den sd tu nhien
3 Thai dp
Tu giac, tich cue trong hgC tap
« Biet phan biet rd cac Idiai niem co ban va van dung trong timg trudng hop cu the
- Tu duy cac va'n de ciia toan hgc mdl each logic va he thd'ng
II CHUAN BI CUA GVVA HS
Trang 8- Can dn lai mgt sd kie'n thiic da hgc ve sd tu nhien d ldp dudi
IIL PHAN PHOI T H 6 I LUONG
Bai nay chia lam 2 tie't :
Tii't 1 : Tix ddu din hit vi du 1
Tii't 2 : Tiep theo den het phdn bdi tap
IV- TIEN TRINH DAY - HOC
Cho cac menh 6i sau :
a) Sd nguyen duong le ldn hon 1 la so nguyen to
HI Hay phat bi^u mdt vai menh de chiia bie'n tu nhien A(n)
• Sau dd GV neu bai toan trong SGK
Chdng minh rang ydi mgi so nguyen duang n, ta ludn cd
1.2 + 2.3 + t n(n + 1) = x :
Trang 9• Thuc hien [HI] trong 4'
Hoat dong cua GV
Cau hdi I
Hay kiem chiing khi n = 1
Cau hoi 2
Cd thd kiem tra dang thiJc (1)
vdi mgi n dugc khdng?
Hoat dong cua HS Ggi y tra Idi cau hoi 1 Vdi n = 1 ta cd dang thiic luon ludn diing
G g i y tra ldi cau hoi 2 Khdng thd
• GV neU cac budc quy nap ;
• Bu&c 1 (budc ca sd, hay budc khdi ddu) Chieng minh A(n) la mpt menh de diing khi n = 1
• Bu&c 2 (budc quy ngp, hay budc "di truyen") Vdi k Id mpt sd
nguyen duang tuy y, xudt phdt td gid thii't A(n) Id mpt menh de diing khi n = k, chimg minh A(n) cdng Id mpt minh de diing khi n = k + 1 Ngudi ta ggi phuang phdp chimg minh viCa niu tren Id phuang phdp quy ngp todn hgc (hay cdn ggi tdt Id phuang phdp quy ngp) Gid thie't dugc noi tai a budc 2 ggi Id gid thie't quy ngp
• GV dua ra mdt sd cau hdi ciing cd :
H2 Hay giai thich tai saO phep chiing minh bang quy nap la diing
H3 Phep chiing minh bang quy nap cd ap dung cho bai toan chiing minh menh de A(x)ba'tki
Trang 10Cau hoi 2
Gia sii cdng thiic diing n = k
hay thie't lap cdng thiic
l^ + 2^ + + k^ + ik+l)^ = (k + 1)2 (it + if
4 ' ;
HS tu chiing minh tie'p
Thuc hien 1H2J trong 5'
Gia sii cdng thiic diing n = k
hay thie't lap cdng thiic
Ta tha'y n = 1, cdng thiic tren ludn ludn diing
Ggi y tra Idi cau hoi 2
3
Trang 11Cau hoi 2
Gia six cdng thiic diing n = k
hay thie't lap cdng thiic
Cau hdi 3
Hay thie't lap cdng thiic khi
n = k + 1 va chiing minh cdng
thiic dd
Nhu vay cdng thiic diing khi « = 1
Ggi y tra ldi cau hoi 2
HS tu thie't lap
Ggi y tra Idi cau hoi 3
l^ + 3^ + + (2k-lf + {2(,k+l)-\f _{k + \)[4ik + \y l)
3
HS tu chiing minh
• GV neu chu y trong SGK:
Trong thuc te, ta cdn gap cdc bdi todn vdi yiu cdu chieng minh minh
de chica bie'n A(n) Id mpt minh de dung vdi mgi gid tri nguyen dicang
n >p, trong dd p Id mpt sd nguyin duang cho tricdc Trong triCdng hgp ndy, de gidi quye't bdi todn ddt ra bang phuang phdp quy ngp, a budc
I ta cdri chimg minh A(n) Id menh de ddng khi n = pvd a budc 2, cdn xet gid thiet quy ngp vdi k Id so nguyin duang tuy y ldn han hodc bdng p ' Thuc hien vf du 2 trong 5 phiit;
Gia sir cong thiic diing n = k
hay thidt lap cdng thiic theo k
Cau hoi 3
Hay thie't lap va chiing minh
cdng thiic voi n = k + I
Hoat ddng cua HS
Ggi y tra ldi cau hoi 1
Ta thay n = 1, cdng thiic tren ludn ludn diing
Ggi y tra Idi cau hdi 2
Trang 12nOATDONCB
TOM TfiT Bfll HOC
1 Cac budc quy nap toan hgc
• Budc 1 {budc CO so, hay bicdc khdi ddu) ChUng minh A{n) la mdt menh de diing khi n-\
• Budc 2 {budc quy ngp, hay buac "di truyen") Vdi k la mdt sd nguydn duong tuy
y, xua't phat tir gia thie't A{n) la mdt menh de diing khi « = A:, chiing minh A{n) cung la mdt menh di diing khi n = k+ i
Ngudi ta ggi phuong phap chiing minh viia neu trdn la phuang phdp cpiy ngp todn hgc (hay cdn ggi tat la phuang phdp quy ngp) Gia thiet dugc ndi tdi d budc 2 ggi
la gid thie't quy ngp
HOATDONC 4
MOT SO Cfia HOI TRfiC NGHIEM ON TfiP Bfil 1
Cdu I Thdng thudng, trong phuong phap quy nap toan hgc ngudi ta chia sd budc
la:
( c ) 3 ; ^ - • (d)4
Tra/^/.(b)
Cdu 2 Trong chiing minh bang phuong phap quy nap, gia thie't quy nap d
(a) Budc 1 ; ' (b) Budc 2 ;
Trang 13(c)Sdhi}uti; (d) So thuc
Trd ldi (a)
Cdu 4 Cho bai toan : Chiing minh rang n (n + 1) chia he't cho 2 vdi mgi n e N*
(a) Menh de dd diing vdi n = 1
(b) Menh de dd diing vdi n = 2
(c) Menh de do diing vdi n = 3
(d) Ca ba ke't luan tren deu sai
Hay chgn cau tra ldi sai
Cdu 6 Cho bai toan nhu cau 5, vdi h > () Hay chgn phuofng an diing trong cac
phuong an sau day:
Trang 14naCFNG DfiN Bfil TfiP SfiCH GIfiO KHOfi
Bai 1 Hudng dan Su dung cac budc chiing minh quy nap
Gia sii cong thUc diing n = k
hay thie't lap cong thiic theo k
Cau hdi 3
Hay thie't lap va chiing minh
Hoat ddng cua HS Ggi y tra Idi cau hoi 1
Vdi AJ = 1, ta cd 1 = —^ Nhu
2
cong thiic diing khi n= I
Ggi y tra ldi cau hdi 2
HS tu lap /
Ggi y tra Idi cau hdi 3
vay
Trang 15cong thUc vdi n = k + 1 1 + 2 + 3 + + ^ + (^ + 1)
Bai 2 HiCdng ddn Sii dung cac budc chiing minh quy nap
Gia sii cdng thiic diing n = k
hay thie't lap cdng thiic theo k
Cau hdi 3
Hay thidi lap va chiing minh
cdng thUc vdi n = k + 1
Hoat ddng cua HS Ggi y tra Idi cau hdi 1
Vdi n = 1, tacd
9 ^ 2.1(1 + 1X2.1 + 1) , „
2 = 4 = ^ '^ ^ N h u v a y ,
3 dung khi « = 1
Ggi y tra Idi cau hdi 2
Cau nay GV chi neu van de, HS tu lap
Ggi y tra ldi cau hdi 3
Ta se chiing minh
2^ + A^ + + {2kf + {2k + 2f, 2{k+\)(k + 2){2k + 2,)
3 Bang phuong pha'p quy nap HS tu chiing minh
Bai 3 Ihcdng ddn Sir dung cac budc chiing minh quy nap
Vdi « = 1, ta cd 1 < 2 V l Nhu vay, ba't dang thiic diing khi « = 1
13
Trang 16Cau hdi 2
Gia sir cdng thiic diing n = k
hay thie't lap cdng thiic theo k
Cau hdi 3
Hay thie't lap va chiing minh
cdng thUc vdi n = k + 1
Ggi y tra Idi cau hdi 2
Cau nay GV chi ndu va'n de, HS tu lap
Ggi y tra Idi cau hdi 3
Gia SU" cdng thiic dung
n = k hSy thiet lap cdng
H o a t d g n g ciia H S Ggi y t r a ldi cau hdi 1 Vdi « = 2, ta cd
1 _ 3 _ 2 +1
4 4 2.2
Nhu vay, (1) diing khi h - 2
Ggi y t r a ldi c a u hdi 2 cau nay GV chi ndu va'n de, HS tu lap
Trang 17thuc theo k
Cau hdi 3
Hay thie't lap va chiing
minh cong thUc vdi
Tii caC chiing minh tren suy ra (1) diing vdi mgi so nguyen « > 2
Bai 5 Sii dung phuong phap quy nap
Gia sii cdng thiic diing n = k
hay thie't lap cdng thiic theo
Vdi rt = 2, ta cd
1 1 _ 7 _ 14 13
3 4 "^ 12 " 24 ^ 24 • Nhu vay, (1) diing khi « = 2
Gdi y tra Idi cau hdi 2
cau nay GV chi neu van de, HS tu lap
Ggi y tra Idi cau hdi 3
Trang 181 1 -; + +
HS tur chiing minh tiep
Bai 6 Sii dung phuong phap quy nap
Gia sir cdng thiic dung n = k
hay thie't lap cdng thiic theo k
Cau hdi 3
Hay thie't lap va chiing minh
cong thUc vdi n = k + 1
Hoat ddng cua HS
G g i y tra ldi cau hdi 1
Vdi « = 1, ta cd
Hj = 7.2^' ~^ + 3^-' ~ ' = 7 + 3 = 10, chia he't cho 5
Suy ra menh de tren diing khi « = 1
Ggi y tra Idi cau hdi 2
cau nay GV chi ndu va'n de, HS tu lap
Ggi y tra Idi cau hdi 3
Trang 19Vi u^^ : 5 (theo gia thie't quy nap), nen
tUdd ta dugc didu can chiing minh
Bai 7 Sir dung phuong phap quy nap
Gia sii cong thdc diing n = k
hay thie't lap cdng thuc theo k
Nhu vay, ta cd (1) diing khi « =1
Ggi y tra ldi caii hdi 2
cau nay GV chi neu va'n de, HS tu lap
Ggi y tra ldi cau hdi 3
That vay, lU gia thie't x > - 1 va gia
thie't quy nap, ta cd
il+x)^^^ = {l+x){l+x)^' '
>{l+x)il+kx) = l+ik+ l)x + kx^
> l + ( A : + l ) x '• •"''•'
TU cac chiing minh tren suy ra (1)
diing vdi mgi n & N*
Bai 8 Sii dung phuang phap quy nap
HS tu giai
2-TKB(.DSVGTl iNCT2
17
Trang 20§2 Day so (tiet 3, 4)
• Cac phuong phap cho day so : Day sd cho bdi cdng thiic, day sd cho bdi
md ta day sd cho bdi truy hdi
Bieu dien hinh hgc cua day sd tren he true toa do,
• Day sd tang, day sd giam va day so bichan
- Tu giac, tfch cue trong hgc tap
Bie't phan biet rd cac khai niem co ban va van dung trong timg truenig hop cy the
•• Tu duy cac va'n de ciia toan hgc mgt each Idgic va he thdng
IL CHUAN BI CUA GV VA HS
1 Chuan hi ciia GV
• Chuain bi cac cau hdi ggi md
Chuan bi phan mau va mgt sd do dung khac
Trang 212 Chuan bi ciia HS
• Can on lai mgt sd kie'n thiic da hgc ve day sd da hgc, da biet
IIL PHAN PHOI T H 6 I L U O N G
Bai nay chia lam 2 tie't:
Tii't I -: Td ddu den hit phdn 2
Tiet 2 : Tiep theo den het phdn bdi tap
IV TIEN TRiNH DAY - HOC
• GV dat va'n de nhu sau
Hay dien vao d trdng
n
(-l)"(n-2)
H1 Nhan xet gi ve dau ciia day sd tren
112 Ta cd the tim dugc mgt sd hang nao dd vdi n bat ki hay khong?
H3 Hay xac dinh sd hang d vi tri thii 100
19
Trang 22H4 Cdng thiic tren cho ta mdt day sd Em hay neu dinh nghTa day so theo quan diem ciia minh
• Neu dinh nghla day so
Mpt hdm sou xdc dinh tren tap hgp cdc sd nguyen duang N * dicgc ggi Id mpt ddy sd vd hgn (hay con ggi tdt Id ddy so)
MSi gid tri cita hdm sd u dicgc ggi Id mpt sdhgng cua day so ; ii(l) dugc ggi Id sd hgng thif nlid't (hay sdhgng ddu); H(2) dugc ggi Id so hgng thic hai :
• GV neu vf du 1, sau dd ihuc hien [jHIJ trong 5'
HS tu tinh todn
Dap so lla = •—
^ 1 0 Ggi y t r a Idi cau hdi 2
HS tu tinh todn,
Ddp sd Uq =
100 Ggi y tra Idi cau hdi 3
HS tu tfjih toan,
Ddp sd. MQ = — ~
1000
• Tie'p theo GV dua ra cac kf hieu ciia day sd
Ngicdi ta tlncdiig ki hieu ddy sd u = u(n) bai (u^), vd ggi «„ la sdhgng tong qudt ciia day sd do
NgiCdi la ciing thudng viel ddy sd(uj dicdi dgng khai trien :
Trang 23H5 Hay la'y vf du mgt vai day sd cho dudi dang cdng thiie tdng quat va chi ra sd
hang thU 10, 100 ciia day sddp- ' '"•••'
116 Hay lay vf du mdt vai day sd cho dudi dang khai trien va chi ra sd hang thii
10, 100 ciia day sodd
H7 Hay so sanh trong each chd nao de tim cac sd hang cua day sd hon
• GV neu chii y trong SGK: ;
NgiCdi ta ciing ggi mpt hdm sdu xdc dinh tren tap hgp gom m sd
nguyen duang ddu tien (m tuy y thupc N*) la mpt ddy sd Ro rdng, ddy sd
trong trudng hgp ndy chi co hicii hgn so hgng (m so hgng : u^, 112, •••• u,,,
) ; vi the, ngiCdi ta con ggi no Id ddy sd hdu hgn ; Wj ggi Id sd hgng ddu
vd i(,„ ggi Id sdhgng cudi
H8 hay neu su khac biet giiia day sd hiru han va day sd vo han
• GV neu vf du 2 va dua ra cau hdi :
H9 Hay neu sd hang dau va so hang cudi ciia day sd tren
HOATDONC 2
2 Cac each cho day so
• GV dat va'n de nhu sau:
HIO; Mgt day sd dugc xac dinh khi nao ?
• GV neu each 1 (each cho day so)
Cdch 1 : Cho ddy sdhai cong thicc ciia sd hgng tong qudt
HI 1 Em hay la'y vf du cho each cho day so nay
• GV neu day sd :
• ' - " " " " 3 « + i • :
21
Trang 24Thuc hien iH2| trong 5
Hoat ddiig cuai GV
Cau hoi 1
Hay xac dinh sd hang U33 cua
day so trdn
Cau hdi 2
Hay xac dinh sd hang U333
cua day so tren
Hoat ddng cua HS Ggi y tra ldi cau hdi 1
Hi3 Hay cho mdt vai vi du khac v^ phudng phap cho day sd bang quy nap
Thuc hien [H3j trong 3'
Trang 25Ggi y tra Idi cau hdi 2
HS tu tfnh toan
• GV neu each 3 :
Diin dgt bang ldi each xdc dinhmSi sdhgng ciia ddy sd
• GV neu vf du 5 va dua ra cac cau hdi nhu sau : '
H14 Hay la'y vf du ve each cho day- so bang ldi
1115 Neu su khac nhau giiia: ba each cho day so
• GV neu chii y :
M-pt day sdcd the cho bang niiieu cdch Chdng hgn, ddy sd(\^J^) d
vi du 3 CO the cho bdi cong thicc ciia sdhgng tong qudt nhusau :
Hay tim cdng thUc
hang tdng quat ciia
Mn = /4M„ = AB sin ABhl
^^\ AOM,, ^ K
- 20 A sm — — ^ = 2sin—
2 n
23
Trang 26HOATDONC 3
3 Day sd tang, day so giam
• GV dat va'n de nhu sau:
+ Cho day sd {u„) = n + 1
Hay dien vao bang sau':
HI7 Hay nhan xet ve su tang,, giam ciia cac sd hang
• GV neu dinh hghIa 2:
Day sd(it^.^) dugc ggi Id ddy sdtdng ne'u vdi mgi n ta co »„ <
»n+l-Day sd(Uj^) dugc ggi la ddy sg gidm ne'u vdi mgi n ta co M„ > «(„+i
• GV neu vf du 6 -va dat ra cac cau hdi nhu sau
HIS Ne'u day sd khong tang thi day sd giam Diing hay.sai ? ;
HI9 Ne'u day sd khong gi^m thi day sd tang! Dung Hay sai ?
Trang 27Thirc hien [HSJ trong 3 '
Hay tim cdng thUc ciia so
hang tdng quat ciia day so
- runj
-J
Hoat ddng cua HS Ggi y tra Idi cau hdi 1
GV ggi HS tra ldi
Ggi y tra ldi cau hdi 2
Mn = AMn = AB sin AfiF,
^,, / AOM-, ^ K:
=• 20A sin ^ = 2sin —
2 n HOATDONC 4
4 Day sd bi chan
• GV dat va'n de nhu sau:
+ Cho day sd (Ujj) = 1
Hay dien vao bang sau :
Trang 28H21 Tim sd hang nhd nha't ciia day
• Sau dd GV neu dinh nghTa
a) Ddy sd(uj dugc ggi la ddy sd bi chgn trin ne'u ton tgi mpt so M
c) Day sd(iij dicgc ggi la ddy sdbi chdn ne'u no vica bi chdn tren, vda
hi chgn dudi ; nghia la, ton tgi mpt sdM vd mpt sdm sao cho
Vn e N^, m < u^ < M
GV neu vf du 7, cho HS la'y them mdt so vf du khac
• Thuc hien |H6| trong 4
GV ggi HS tra Idi
Ggi y tra ldi cau hdi 2
Cac khang dinh diing : b), c), d) va e)
• Mdt sd cau hdi on tap
H22 Day so la mdt ham so
(a) Diing ; (b) Sai
H23 Mgi day sd deu la day sd tang hac giam
(a) Diing ; (b) Sai
Trang 29H24 Day sdbi chart la day sd tang,hac giam
(a) Diing; < (b) Sai
H25 Day sd giam la day sd bj chan
(a) Diing ; (b) Sai
H26 Day so tang la day so bj chan
(a) Diing; (b) Sai
H27 Ne'u day sd khdng tang thi giam
(a) Diing ; (b) Sai
H28 Day sd khdng giam la day so tang
(a) Diing ; (b) Sai
H29 Cd nhihig day sd khdng tang ciing khong giam
(a)Diing; (b) Sai
HOATDONC 5
TOM T^T Bfil HOC
1 Mdt ham so u xac djnh tren tap hgp cac so nguyen duong N * dugc ggi la mdt
day sd vd han (hay cdn ggi tat la day so')
Mdi gia trj ciia ham so u dugc ggi la mdt sd hgng ciia day sd ; M(1) duge ggi la sd hgng thic nhdt (hay sdhgng ddu); M(2) dugc ggi ^sdhgng thic hai;
Ngudi ta thudng kf hieu cac gia trj M(1), M(2), tuong iing bdi MJ , 112 ,
2 Ngudi ta thudng kf hieu day sd M = «(«) bdi (Mn), va ggi Mn la sdhgng tdng qudt
Trang 30cd hiru han sd hang (m sd hang : MJ, M2, , M„, ) ; vi the, ngudi ta cdn ggi nd la ddy sdlncu hgn ; MJ ggi la sdhgng ddu vh ii,„ gglla sdhgng cudi
4 Cd cac each cho day so sau :
Cho ddy sdbdi cong thicc ciia sdhgng tong qudt
Cho ddy sdhai he thdc truy hoi (hay cdn ndi: Cho ddy sdbdng quy ngp)
Dien dgt hdng ldi cdch xdc dinh moi sdhgng ciia day sd
5 Day sd (»„) dugc ggi la day so tang ne'u vdi mgi n ta cd u^ < M^+I
Day sd (M„) dugc ggi la day sd giam nd'u vdi mgi n ta cd Mn > M„^.-J
6 a) Day sd (M„) dugc ggi la day sd bj chan tren ne'u ton tai mgt sd M.sao cho
V/7 G N*, Mn < M
b) Day sd (M,,) dugc ggi la day sd bj chan dudi neu tdn tai mdt sd m sao cho
Vn G N*, Mn > m
c) Day sd (M^) dugc ggi la day sd bj chan ne'u nd vUa bi chan trdn, vUa bj chan dudi;
nghTa la, tdn tai mgt sd M ya nidt sd m sao cho :
Vn G N*, m < u^ < M
HOAT DONG'6
MOT SO CfiU HOI TR^C NGHIEM KHfiCH QUfiN
Hdy dien diing sai vdo 6 tr.dng sau
Cdu I Cho day sd Uj, = —
n (a) Day so da cho la day sd tang
(b) Day sd da cho la day sq giam
D
D
Trang 31(c) Day sd da cho la day sd khdng ddi
(d) Day sd da cho la day so khong tang, khong giam
(b) Day so da cho la day sd giam
(c) Day sd da cho la day sd khdng doi
(d) Day sd da cho la day sd khong tang, khong giam
(b) Day so da cho la day sd giam
(c) Day sd da cho la day sd khdng ddi
(d) Day sd da cho la day sd khong tang, khdng giam
Trang 32C<3M ^ Cho day so u^ = —•
:-n^ + 1
(a) Day sd da cho la day so tang
(b) Day sd da cho la day so giam
(c) Day so da cho la day so khdng ddi
(d) Day so da cho la day sd khong tang, khdng giam
(b) I3ay sd da cho la day so giam
(c) Day so da cho la day so bj chan
(d) Day sd da cho la day so khong tang, khdng giam
Cdu 7 Cho day sd Uj - 2, u,^ = u„_j + 3
(a) Day sd da eho la day so tang
(b) Day sd da cho la day sd giam
(c) Day sd da cho la day so bj chan dudi
(d) Day sd da cho la day sd khong tang, khong giam
Trang 33Cdu 8 Cho day so U| = 2, Uj, = Uj^_i - 3
(a) Day sd da cho la day sd tang U (b) Day sd da cho la day sd giam |_J (c) Day sd da cho la day sd bj chan tren |_|
(d) Day sd da cho la day sd khdng tang, khdng giam |_|
Hdy chgn khdng dinh diing trong cdc cdu sau
Cdu 9 Cho day so
U i i l , u , / = U n _ i - 2 Trong cac sd sau day sd nao la sd hang ciia day sd:
Trang 34Cdu J1 Cho day sd
U i = l , U n = U n _ , + 2 Trong cac sd sau day sd nao la so hang ciia day sd:
( a ) - 1 6 2 ; (b) 162
(c) 81; ( d ) - 8 1
Trd uyi (a)
Trang 35HOATDQNC 7
HCrd^NG DfiN Bfil TfiP SGK
Bai 9 Huang ddn Six dung cac cdng thiic sd hang tdng quat cua day sd:
GV ggi ba HS len bang va cho dien vao d trdng sau :
Trang 36ChUng minh cdng thiic tong
quat ciia day so ddng vdi
Cdng thiic diing idii « = 1
Ggi y tra Idi cau hdi 2
«k + l = 2Mk + 3=2.(2'' + * - 3 ) + 3
_ T ( k + l)-l- 1 _ T
Tir cac chiing minh trdn suy ra
* diing vdi mgi « G N
2
Ta cd M„ + J - Mn = 3n - 4n + 3 > 0
Trang 37Cau hdi 2
Ket luan:
Ggi y tra Idi cau hdi 2
Day so tang
Cau b, cau c, HS giai tuang tu
Bai 14 Hifdng ddn Dua vao djnh nghTa day sd tang, day sd giam va day sd bj
Trang 38Luyen tap (tiet 5)
I MUC TIJEIJ
1 Kien thiirc
HS on tap lai kien thuc ciia hai bai da hgc ; PhUOng phip quy nap toin hgc va day sd Dac biet la bai day sd, thdng qua cac bai tap nham ciing cd lai cac kie'n thUc :
• Djnh nghla va cac phuong phap cho day so
- Day sd tang va day so giam
Day sd bj chan
2 KT nang
Khac sau them viec xet hieu Uj^^j-Uj, va thuong "'"^ de xet tfnh
Un
tang, giam ciia day so
Phuong phap phan tfch thanh long de chiing minh dSy sd bj chan
3 Thai do
- Tu giac, tfch cue trong hgc tap.,
Biei plian biet rd cac khai niem co ban va van dung trong tiing trudng hgp cy the
- Tu duy cac va'n de ciia toan hgc mdt each Idgic va he thd'ng
Bie't phan biet hinh thiic va ndi dung bai toan
n CHUAN BI CUA GV VA HS
1 Chuan bj ciia GV
Chuan bj cac cau hdi ggi md
Chuan bj pha'n mau va mgt dung dd ddng kh^c
2 Chuan bi ciia HS
Can on lai mot sd kien thiic hai bai da hoc
Trang 39m PHAN PHOI THCJI LU0NG
Bai nay chia lam 1 tie't
IV. T I £ ' N TRINH DAY - HOC
Bai 15 Bai nay, nham hudng HS de'n bai sau, tuy nhien GV nen cho HS phan tich
kT bai tap ve : Cdng thiic tdng quat va truy hdi cua day sd
a) GV ggi HS dien vao cac d trdng sau :
37
Trang 40khdng?
Cau hdi 2
Hay chiing minh cdng thu'c
bang quy nap
Cdng thiic dung khi « = 1
Ggi y tra ldi cau hdi 2
.= 1.+ ( 1 - 1).2^