1. Trang chủ
  2. » Biểu Mẫu - Văn Bản

Đề thi thử THPT quốc gia 2020 môn Toán THPT Thành Nhân có đáp án | Toán học, Đề thi đại học - Ôn Luyện

15 13 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 0,98 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Cho hình nón có đường kính đáy và đường sinh bằng nhau, A là một điểm nằm trên đường tròn đáy.?. Hướng dẫn giải:A[r]

Trang 1

THPT TN - MĐ: 001 - Trang 1/5

SỞ GIÁO DỤC & ĐÀO TẠO TP.HCM

TRƯỜNG THPT THÀNH NHÂN

THI THỬ TỐT NGHIỆP THPT LẦN 1_26.06.2020

Môn Thi: TOÁN 12

Thời gian làm bài: 90 phút

(50 câu trắc nghiệm gồm 5 trang)

Họ tên học sinh Số báo danh Lớp: 12

Câu 1 Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là :

A 3

7

7

Câu 2 Cấp số cộng  u n với u17 và u3 15 Công sai của cấp số cộng đã cho bằng

Câu 3 Nghiệm của phương trình 1

2x 8 là

A x4 B x3 C x2 D x1

Câu 4 Cho hình hộp chữ nhật ABCD A B C D như hình vẽ bên ' ' ' '

Biết AC 13 và BD' 22, độ dài cạnh AA' bằng

A 9 B 35

C 3 D 35

Câu 5 Tập xác định của hàm số y(x2) 2 là

A \2 B C (0;) D ( 2; )

Câu 6 Nếu hàm số F x  là một nguyên hàm của hàm số f x  trên khoảng K thì một nguyên hàm khác của f x  trên K

A 2F x  B F 2x C F x 2 D  

2

Câu 7 Cho khối chóp có diện tích đáy B6 và thể tích V 4 Chiều cao ứng với đáy B của khối chóp bằng

Câu 8 Cho khối nón có chiều cao h4 và bán kính đáy R 5

 Thể tích của khối nón bằng

A 100

3

Câu 9 Cho mặt cầu có thể tích Va m 3 và diện tích Sa m 2 , với a là số thực dương Bán kính mặt cầu bằng

A 1 m  B 27  m C 3  m D 3  m

Câu 10 Khoảng đồng biến của hàm số yx44x6 là

A   1;  B  ; 9 C  ; 1 D   9; 

Câu 11 Giá trị của biểu thức Pe2020.ln100 2 104040 bằng

C

D

A’

B’

A

B

C’ D’

001

Trang 2

THPT TN - MĐ: 001 - Trang 2/5

Câu 12 Cho khối trụ có chu vi đáy bằng 4 a và độ dài đường cao bằng a Thể tích của khối trụ đã cho bằng

A 3

a

Câu 13 Số điểm cực trị của hàm số  2021

1

yx là

Câu 14 Đường cong ở hình bên là đồ thị của hàm số nào trong các

hàm số cho dưới đây

A yx33x24 B.y  x3 3x24

C y  x3 3x 2 D y  x3 4

Câu 15 Tiệm cận ngang của đồ thị hàm số 2 1

2

x y

x

 

 là

A y2 B x2 C x 2 D y 2

Câu 16 Tập nghiệm của bất phương trình 3

4

log x1 là

A 3;

4

 

3 0;

4

3

; 4



3

; 4

 

 

Câu 17 Cho hàm số   4 2

yf xaxbxc có bảng biến thiên như sau :

y

+∞

4

3

4

+∞

Gọi S là tập nghiệm của phương trình 2f x  7 0, tổng tất cả các phần tử của S bằng

Câu 18 Nếu 1  

0

3

 thì 1  

0

(3f x 2 )x dx

Câu 19 Số phức liên hợp của số phức zi

A zi B z1 C z i D z 1

Câu 20 Cho hai số phức z1 2 3iz2  2 i Phần ảo của số phức z1z2 bằng

Câu 21 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z  1 i là điểm nào dưới đây ?

A A1;0 B B 1; 1 C C0; 1  D D1;1

Câu 22 Trong không gian Oxyz, hình chiếu của điểm M5; 1; 4  trên trục tung có tọa độ là

A 5;0; 4 B 0; 1;0  C 0;0; 4 D 5;0;0

Câu 23 Trong không gian Oxyz, mặt cầu tiếp xúc với các mặt phẳng tọa độ, có phương trình là

A  2  2  2

4 2

2 2

C  2  2  2

8 2

2 2 2

Trang 3

THPT TN - MĐ: 001 - Trang 3/5

Câu 24 Trong không gian Oxyz, cho mặt phẳng   : 2x y 3z 1 0 Một véctơ pháp tuyến của mặt phẳng   là

A n10;1;0 B n2 2;0; 3  C n32;1;3 D n4   2;1;3

Câu 25 Trong không gian Oxyz, cho mặt phẳng   :x   y z 3 0 và đường thẳng : 1

Tọa độ giao điểm của đường thẳng d và mặt phẳng   là

A 5; 2;6 B 3;0;0 C 1;1;3 D 2;1;3

Câu 26 Cho tứ diện đều ABCD cạnh a Tính góc giữa hai đường thẳng CI và AC , với I là trung

điểm của AB

A 30 B 60 C 150 D 10

Câu 27 Cho hàm số f x  có đạo hàm là     2 4

fxx xx  x Số điểm cực tiểu của hàm

số yf x  là ?

Câu 28 Giá trị nhỏ nhất của hàm số y x 1 4

x

   trên đoạn  1; 4 bằng

2

Câu 29 Biết log6 a 3, tính giá trị của loga 6

A 3 B 1

4

1

12

Câu 30 Cho đồ thị hàm số   3 2

yf xaxbx  cx d như hình vẽ Biết phương trình   1

2 2

có ba nghiệm lần lượt là 1, 2,1

2

x x Tính tổng P x1 x2

A 1

3

2

3

Câu 31 Biết S  a b; là tập nghiệm của bất phương trình 3.9x10.3x 3 0 Tìm T b a

A 10

3

3

Câu 32 Cho tam giác ABC vuông tại A có AB6,AC8 Tính diện tích xung quanh của hình nón tròn

xoay tạo thành khi quay tam giác ABC quanh cạnh AC

A S xq 80 B S xq 160 C S xq 120 D S xq 60

Câu 33 Xét tích phân 3 4 5

4 3 d

I x xx Bằng cách đặt u4x43, khẳng định nào sau đây đúng ?

A 1 5d

16

12

4

Câu 34 Biết diện tích hình phẳng giới hạn bởi đồ thị hàm số y3x22mxm21 (với m là tham số thực), trục hoành, trục tung và đường thẳng x 2 đạt giá trị nhỏ nhất Chọn mệnh đề đúng

A m   3; 2 B m 3;5 C m 1;3 D m  2;1

x

y

1

Trang 4

THPT TN - MĐ: 001 - Trang 4/5

Câu 35 Trên mặt phẳng tọa độ Oxy, điểm biểu diễn của số phức z là điểm A 2;1 Số phức liên hợp của z

A 2 iB  1 2i C 2 iD 1 2i

Câu 36 Biết phương trình x22mx  3 m 0 (với m là tham số thực) có một nghiệm phức là

z   i Giá trị của m (thỏa mãn bài toán) thuộc khoảng nào trong các khoảng sau ?

A  2; 1 B 1;3 C  3;5 D 5; 7

Câu 37 Trong không gian Oxyz, cho hai mặt phẳng   : 2x2y2z 6 0 và   :x   y z 2 0 Hình lập phương ABCD A B C D có các đỉnh ’ ’ ’ ’ A B C D, , , thuộc mặt phẳng   ; các đỉnh A B’, ’, ’, ’C D

thuộc mặt phẳng   Thể tích khối lập phương ABCD A B C D bằng ’ ’ ’ ’

A 125

1

64

512

3 3

Câu 38 Trong không gian Oxyz, cho hai đường thẳng : 1 1

 và

    Biết hai đường thẳng a, b lần lượt nằm trên hai mặt phẳng phân biệt là  P và  Q , điểm A1;1;1 thuộc giao tuyến d của hai mặt phẳng  P và  Q Điểm Mx y z0; 0; 0 là giao điểm của d và mặt phẳng

Oxy, khi đó, giá trị của Tx0y03z0 bằng

Câu 39 Trường Trung Học Phổ Thông Thành Nhân có 3 cơ sở, Cơ sở 1 có 13 lớp, Cơ sở 2 có 10 lớp, Cơ

sở 3 có 15 lớp Chọn ngẫu nhiên ra 12 lớp của Trường, tính xác suất để các lớp ở Cơ sở 2 đều được chọn

A 12

38

378

378

1597050

195

Câu 40 Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A, ABAC2a , hình chiếu

vuông góc của đỉnh S lên mặt phẳng ABC trùng với trung điểm H của cạnh AB Biết SHa , khoảng cách giữa hai đường thẳng SA và BC là

A 2

3

a

3

a

2

a

3

a

Câu 41 Cho hàm số   3 2

yf xaxbx  cx d có đồ thị như hình vẽ Gọi S là tập hợp tất cả các giá trị

nguyên của m để đồ thị hàm số  2 

34 113

yf xmm có 5 điểm cực trị Số phần tử của S là

Câu 42 Cho hàm số   4 3 2

( 0)

yf xaxbxcxdx e a  , đồ thị của hàm số f ' x có dạng như hình vẽ bên Biết f ' 2 3 và

 0 0

f  , số nghiệm của phương trình 4f x 250 là

A 1 B 2

C 3 D 4

Trang 5

THPT TN - MĐ: 001 - Trang 5/5

Câu 43 Có bao nhiêu giá trị nguyên của tham số m để phương trình e4 x1 4 x  1 m 2ln m

nghiệm thực ?

Câu 44 Cho tứ diện ABCD có cạnh ABx x 0, các cạnh còn lại đều bằng 1 Một giá trị của x để thể

tích của khối tứ diện ABCD có giá trị bằng 1

6 2 là

A 1

Câu 45 Cho hàm số f x thỏa mãn ( )

2

1

1

x

  Giá trị của tích phân

1 ( )

e

I  f x dx thuộc khoảng nào trong các khoảng cho dưới đây ?

A 3;0 B  0; 2 C  2;3 D  3;5

Câu 46 Cho hình nón có đường kính đáy và đường sinh bằng nhau, A là một điểm nằm trên đường tròn

đáy Hỏi trên đường tròn đáy có bao nhiêu điểm M thỏa mãn 0

AMSk.12 (với S là đỉnh của hình nón, k

số nguyên dương) ?

Câu 47 Cho đồ thị của hàm số y f x  ax b

ax a

 ( ,a b ) cắt các trục tọa độ tại hai điểm phân biệt M,

N ở cùng một phía so với đường tiệm cận đứng của đồ thị Chọn khẳng định đúng ?

A ab0 B ab0 C a 0

a

Câu 48 Cho hàm số yf x  đạt cực trị tại x 3 Hàm số yf ' x có bảng biến thiên như sau

x  1 1 

 

'

8 

 8

Có bao nhiêu số nguyên m 3 để hàm số f x m   đồng biến trên khoảng  3; ?

Câu 49 Cho hàm số 3  4 2  2

x

y  mmx thỏa mãn

  0;1   0;1

47 min max

3

yy  Tích các giá trị thực của m thỏa mãn bài toán là

Câu 50 Có bao nhiêu số nguyên y sao cho tồn tại số thực x thỏa mãn

log xx 2y log xx 2yy 2y ?

- Hết -

Trang 6

1 Hướng dẫn giải:

Đây là tổ hợp chập 3 của 7 phần tử Vậy có 3

7

C tập hợp con

Chọn đáp án A

2.Hướng dẫn giải:

3 1

15 7

Chọn đáp án B

3.Hướng dẫn giải:

Ta có : 2x1 8 2x123    x 1 3 x 2

Chọn đáp án C

4.Hướng dẫn giải:

Ta có: AA' BD'2B D' '2  BD'2AC2 3

Chọn đáp án C

5.Hướng dẫn giải:

Điều kiện: x    2 0 x 2

Chọn đáp án D

6.Hướng dẫn giải:

Ta có : F x 2'F' xf  x

Chọn đáp án C

7.Hướng dẫn giải:

Chiều cao cần tính là 3 3.4 2

6

V h B

   Chọn đáp án B

8.Hướng dẫn giải:

Thể tích của khối nón bằng

2

4

 

Chọn đáp án D

9 Hướng dẫn giải:

Theo giả thiết, ta có 4 3 4 2 3 2 0 0

3 3

R

R

        

Chọn đáp án D

10.Hướng dẫn giải:

Ta có 3

4x 4 0

     x 1 Vậy khoảng đồng biến của hàm số là   1; 

Chọn đáp án A

11 Hướng dẫn giải:

Ta có : 2020.ln100 2020  ln1002020 2020 2020 2020

Chọn đáp án C

Trang 7

12.Hướng dẫn giải:

Gọi chu vi đáy là P thì P2R 4a2R R 2a

Khi đó thể tích khối trụ: 2

2a a

4 a

 Chọn đáp án A

13.Hướng dẫn giải:

Tập xác định D

Ta có :  2020

2021 1 0,

y  x   x nên hàm số không có cực trị

Chọn đáp án C

14.Hướng dẫn giải:

- Nhánh phải của đồ thị đi xuống nên loại đáp A

- Đồ thị đi qua điểm 0; 4  nên loại đáp án C

- Đồ thị hàm số có hai điểm cực trị nên loại đáp án D

Chọn đáp án B

15Hướng dẫn giải:

Ta có : 2 1 2 1

y

Đường tiệm cận ngang là y 2

Chọn đáp án D

16.Hướng dẫn giải:

Ta có : 3

4

3

3

4 0

x

x

 

    

 

 

Chọn đáp án B

17 Hướng dẫn giải:

Ta có : 2   7 0   7

2

f x    f x  

Suy ra, phương trình đã cho có 4 nghiệm là x x1, 2 và x1,x2

Vậy tổng các phần tử của S bằng x1x2  x1  x20

Chọn đáp án C

18.Hướng dẫn giải:

1

0

Chọn đáp án B

19.Hướng dẫn giải:

Số phức liên hợp của số phức zi là z i

Chọn đáp án C

20.Hướng dẫn giải:

Ta có : z1z2  4i là số phức có phần ảo bằng – 4

Chọn đáp án B

Trang 8

21.Hướng dẫn giải:

Điểm biểu diễn số phức z  1 i là điểm D1;1

Chọn đáp án D

22 Hướng dẫn giải:

Hình chiếu của điểm M5; 1; 4  trên trục tung có tọa độ là 0; 1;0 

Chọn đáp án B

23 Hướng dẫn giải:

Tâm mặt cầu tiếp xúc với các mặt phẳng tọa độ là I2; 2; 2 nên bán kính mặt cầu đó bằng 2 Chọn đáp án A

24

Hướng dẫn giải:

Một véctơ pháp tuyến của mặt phẳng   là n4 2;1;3 2; 1; 3  

Chọn đáp án D

25 Hướng dẫn giải:

Mặt phẳng   và đường thẳng d cắt nhau, mà tọa độ điểm M5; 2;6 thỏa mãn cả phương trình mặt phẳng và phương trình đường thẳng nên điểm M5; 2;6 chính là giao điểm cần tìm

Chọn đáp án A

26.Hướng dẫn giải:

Do I là trung điểm của AB nên CI CA, ICA

Tam giác AIC vuông tại I, có 1

AI

AC

2

IA

CA

Chọn đáp án A

27 Hướng dẫn giải:

Đạo hàm f ' x đổi dấu từ âm qua dương khi qua điểm x0 nên hàm số có duy nhất điểm cực tiểu

Chọn đáp án C

Trang 9

28 Hướng dẫn giải:

Xét trên đoạn  1; 4 , ta có : y x 4 1 2 x.4 1 5

     

Đẳng thức xãy ra khi x 4 x 2

x

   Chọn đáp án A

29 Hướng dẫn giải:

Ta có : loga 6 1log 6

6

1

2log a

6

1

6

1

4.3

12

Chọn đáp án D

30 Hướng dẫn giải:

Tọa độ hai điểm cực trị của đồ thị hàm số đã cho là 0;0  , 1;1 nên điểm uốn có tọa độ 1 1;

2 2

  Suy ra : 1 2 2.1 1

2

Chọn đáp án C

31 Hướng dẫn giải:

Ta có 3.9x10.3x 3 0  2

3 3x 10.3x 3 0

3

x

   log31 log 33

3 x

1 x 1

    Khi đó bất phương trình có tập nghiệm là S   1;1, do vậy T    1  1 2 Chọn đáp án D

32 Hướng dẫn giải:

Ta có S xq Rl

Với lBCAB2AC2 10, RAB6

Vậy S xq .6.1060

Chọn đáp án D

33 Hướng dẫn giải:

16

5

1

d

16

Chọn đáp án A

34 Hướng dẫn giải:

yxmxm   xmx    x

Diện tích hình phẳng cần tìm là

2

0

0

2

0

Trang 10

2 2 2m 2m 2

2 m 2m 3

2

m

     

2

2 5 2

2

m

    

Ta thấy 5 2

2

S  , suy ra S đạt giá trị nhỏ nhất khi và chỉ khi 2

2

Chọn đáp án D

35 Hướng dẫn giải:

Điểm biểu diễn của số phức z là điểm A 2;1 nên z    2 i z 2 i

Chọn đáp án A

36 Hướng dẫn giải:

Phương trình có một nghiệm là z1   2 i nên có nghiệm còn lại là z2   2 i Suy ra : z1z2  2m   4 m 2

Chọn đáp án B

37 Hướng dẫn giải:

Cạnh hình lập phương có giá trị bằng khoảng cách giữa hai mặt phẳng   và  

   

  32  22 2 5 3

,

3

1 1 1

Thể tích khối lập phương ABCD A B C D là ’ ’ ’ ’

3

125

5 3

3 3 3

  

Chọn đáp án A

38 Hướng dẫn giải:

Do a/ /b nên giao tuyến d có vec tơ chỉ phương là u2;3; 1 

Phương trình đường thẳng d là

1 2

1 3 1

 

  

  

; Phương trình mặt phẳng Oxy là : z0

Suy ra, tọa độ của điểm M là 3; 4;0

Chọn đáp án D

39 Hướng dẫn giải:

Chọn ngẫu nhiên 12 lớp trong 38 lớp thì ta có số cách chọn là : C1238

Gọi X là biến cố : “ tất cả các lớp của Cơ sở 2 đều được chọn ”

TH1: 1 lớp của Cơ sở 1 và 1 lớp của Cơ sở 3

1 1

13 15 195

TH2: 2 lớp của Cơ sở 1 và 0 lớp của Cơ sở 3

2 0

13 15 78

TH3: 0 lớp của Cơ sở 1 và 2 lớp của Cơ sở 3

0 2

13 15 105

Suy ra : n X 195 78 105  378

Trang 11

Xác suất cần tìm là 12

38

378

P C

 Chọn đáp án B

40

Hướng dẫn giải:

Dựng Ax BC// d SA BC , d B SAx ;  ; Dựng HKAxSHKAx ;

Dựng HESKd B ,SAx2d H ,SAx

Ta có: sin sin 45

2

a

HKAH HAKa   ;    2 2

,

3

Do đó :   2

,

3

a

Chọn đáp án A

41 Hướng dẫn giải:

Đặt 2

34 113

Đồ thị hàm số yfxk được suy ra như sau : yf x  y f x k   y fxk

Đồ thị hàm số yfxk có 5 điểm cực trị khi ta dịch chuyển đồ thị hàm số yf x  sang phải lớn hơn 2 đơn vị, tức là k 2 2 2

111 m 34

Vậy số phần tử của S là : 34 111 1 146  

Chọn đáp án B

42 Hướng dẫn giải:

Do đồ thị của hàm số f ' x cắt trục hoành tại 3 điểm phân biệt nên hàm số f ' x có dạng :

f ' 2 3 nên 3a2 1  2 3 2 5    a 1

Ta được :       3 2

x

Lại do f  0 0 nên C0   4 3 23 2

x

Trang 12

Bảng biến thiên của hàm số f x là :  

x  1 3 5



 

'

f x - 0 + 0 - 0 +

 

f x

 9

4



25

4

 25

4

Từ bảng biến thiên suy ra số nghiệm của phương trình 4f x 250 bằng số giao điểm của đồ

thị hàm số yf x và đường thẳng 25

4

Chọn đáp án B

43Hướng dẫn giải:

Ta có : e4 x1 4 x 1 elnmlnm (m0)

Xét hàm số f  t  e t t t,  ; f ' t     e t 1 0, t

Suy ra : lnm 4 x   1 4 m e4 54,5

Số phần tử của S là : 54

Chọn đáp án A

44 Hướng dẫn giải:

,

ACD BCD là các tam giác đều Gọi M là trung điểm của

cạnh CD thì ta có CDABM

Gọi N là trung điểm của cạnh AB, ta có:

2 2

2

x x

 

Ta được:

2 2

.

ABCD

x

2

x

x

   

Chọn đáp án B

A

B

D

C

M

x

N

Ngày đăng: 21/04/2021, 19:45

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w