Câu 3: Tìm số nguyên tố có ba chữ số, biết rằng nếu viết số đó theo thứ tự ngược lại thì ta được một số là lập phương của một số tự nhiên.. Giải.[r]
Trang 1CÁC DẠNG BÀI TẬP NÂNG CAO VỀ SỐ NGUYÊN TỐ
1 Phương pháp giải
Phương pháp: Cách tìm chữ số tận cùng
• Các chữ số cuối cùng của 1n là 1
• Các chữ số cuối cùng của 5n là 5 với n>0
• Các chữ số cuối cùng của 2n được lặp lại theo chu kì 4k + 1, với k là số tự nhiên và 1 = 0,3 , tức là:
+ n=4,8,…,4k+0 có chung chữ số cuối cùng là 6;
+ n=1,5,9,…,4k+1 có chung chữ số cuối cùng là 2;
+ n=2,6,10,…,4k+2 có chung chữ số cuối cùng là 4;
+ n=3,7,11,…,4k+3 có chung chữ số cuối cùng là 8;
• Các chữ số cuối cùng của 3n được lặp lại theo chu kì 4k+1, với k là số tự nhiên và 1= 0,3 , tức là:
+ n=0,4,8,…,4k+0 có chung chữ số cuối cùng là 1;
+ n=1,5,9,…,4k+1 có chung chữ số cuối cùng là 3;
+ n=2,6,10,…,4k+2 có chung chữ số cuối cùng là 9;
+ n=3,7,11,…,4k+3 có chung chữ số cuối cùng là 7;
• Các chữ số cuối cùng của 7n được lặp lại theo chu kì 4k+1, với k là số tự nhiên và 1= 0,3 , tức là:
+ n=0,4,8,…,4k+0 có chung chữ số cuối cùng là 1;
+ n=1,5,9,…,4k+1 có chung chữ số cuối cùng là 7;
+ n=2,6,10,…,4k+2 có chung chữ số cuối cùng là 9;
+ n=3,7,11,…,4k+3 có chung chữ số cuối cùng là 3;
• các số có chữ số tận cùng là 0,1,5,6 khi nâng lên lũy thừa bậc bất kì thì được chữ số tận cùng vẫn không thay đổi
• các số có chữ số tận cùng là 4,9 khi nâng lên lũy thừa bậc lẻ thì chữ số tận cùng vẫn không thay đổi
• các số có chữ số tận cùng là 3,7,9 khi nâng lên lùy thừa bận 4n (n là số tự nhiên) thì chữ số tận cùng là 1
• các số có chữ số tận cùng là 2,4,8 khi nâng lên lũy thừa bậc 4n (n là số tự nhiên) thì chữ số tận cùng là 6
2 Ví dụ minh họa
Ví dụ 1: Chứng minh rằng các số sau đây là hợp số:
a) 27+311+513+717+1119
b) 1+2123+23124+25125
Hướng dẫn giải
a) Ta có: 27+311+513+717+1119
Theo quy ước ta có:
27 có chữ số tận cùng là 8
311 có chữ số tận cùng là 7
513 luôn có chữ số tận cùng là 5
717 có chữ số tận cùng là 7
Trang 21119 luôn có chữ số tận cùng là 1
Ta có: 27+311+513+717+1119 có chữ số tận cùng là 8
Suy ra 27+311+513+717+1119 chia hết cho 2
Vậy, đây là hợp số
b) Ta có :1+2123+23124+25125
2123 có chữ số tận cùng là 1
23124 có chữ số tận cùng là 1 ( các số có chữ số tận cùng là 3 khi nâng lên lũy thừa bậc 4n (n là số tự nhiên) thì có chữ số tận cùng là 1 Số đã cho có số mũ là 124 = 4.31)
25125 luôn có chữ số tận cùng là 5
Nên 1+2123+23124+25125 có chữ số tận cùng là 8
suy ra 1+2123+23124+25125 chia hết cho 2
vậy, đây là hợp số
Ví dụ 2: Chứng minh rằng nếu ba số a, a+k, a+2k đều là các số nguyên tố lớn hơn 3, thì k chia hết cho 6 Hướng dẫn giải:
Do a, a + k, a + 2k đều là nguyên tố lớn hơn 3 nên đều là số lẻ và không chia hết cho 3
• Vì a và a + k cùng lẻ nên a + k - a = k ⋮ 2 (1)
• Vì a, a + k, a + 2k đều không chia hết cho 3 nên khi chia cho 3 ít nhất hai số có cùng số dư, khi đó:
+ Nếu a và a + k có cùng số dư, thì suy ra: (a+k) - a = k ⋮ 3
+ Nếu a + k và a + 2k có cùng số dư, thì suy ra: (a+2k )- (a+k)= k ⋮ 3
+ Nếu a và a + 2k có cùng số dư, thì suy ra:
( a + 2k ) - a = 2k 3 nhưng (2,3) = 1 nên k 3
Vậy, ta luôn có k chia hết cho 3 (2)
Từ (1),(2) và do (2,3)=1 ta suy ra k ⋮ 6, đpcm
Nhận xét: Trong lời giải trên, ta đã định hướng được rằng để chứng minh k ⋮ 6 thì cần chứng minh k ⋮ 2 và
k ⋮ 3 và ở đó:
• Việc chứng minh k ⋮ 2 được đánh giá thông qua nhận định a, a + k,a + 2k đều là nguyên tố lẻ hơn kém nhau k đơn vị
• Việc chứng minh k ⋮ 3 được đánh giá thông qua nhận định “ba số lẻ không chia hết cho 3 thì có ít nhất hai số có cùng số dư” và như vậy hiệu của hai số đó sẽ chia hết cho 3
Ví dụ 3: Ta biết rằng có 25 số nguyên tố nhỏ hơn 100 Tổng của 25 số nguyên tố đó là số chẵn hay lẻ?
Hướng dẫn giải:
Ta thấy trong 25 số nguyên tố có 1 số chẵn còn lại là 24 số lẻ Tổng của 24 số lẻ là một số chẵn nên tổng của 25 số nguyên tố nhỏ hơn 100 là số chẵn
Ví dụ 4: Tổng của ba số nguyên tố bằng 1012 Tìm số nhỏ nhất trong ba số nguyên tố đó
Hướng dẫn giải:
Vì tổng của 3 số nguyên tố bằng 1012, nên trong 3 số nguyên tố đó tồn tại một số nguyên tố chẵn Mà số nguyên tố chẵn duy nhất là 2 và là số nguyên tố nhỏ nhất Vậy số nguyên tố nhỏ nhất trong 3 số nguyên tố
đó là 2
Trang 33 Bài tập
Câu 1: Tìm bốn số nguyên tố liên tiếp, sao cho tổng của chúng là số nguyên tố
Giải
Tổng của 4 số nguyên tố là một số nguyên tố ⇒ tổng của 4 số nguyên tố là 1 số lẻ ⇒ trong 4 số đó tồn tại
ít nhất một số nguyên tố chẵn Mà số nguyên tố chẵn duy nhất là 2 Vậy 4 số nguyên tố cần tìm là: 2; 3; 5;
7
Câu 2: Tổng của hai số nguyên tố có thể bằng 2003 được không?
Giải
Vì tổng của 2 số nguyên tố bằng 2003, nên trong 2 số nguyên tố đó tồn tại 1 số nguyên tố chẵn Mà số nguyên tố chẵn duy nhất là 2 Do đó số nguyên tố còn lại là 2001 Do 2001 chia hết cho 3 và 2001 > 3 Suy ra 2001 không phải là số nguyên tố ⇒ Tổng của hai số nguyên tố không thể bằng 2003
Câu 3: Tìm số nguyên tố có ba chữ số, biết rằng nếu viết số đó theo thứ tự ngược lại thì ta được một số là
lập phương của một số tự nhiên
Giải
Gọi số tự nhiên đó là a
Ta có 103 = 1000; 53 = 125 ⇒ 125 ≤ a 3 < 1000 ⇒ 5 ≤ a < 10
Ta có bảng sau:
Vậy số cần tìm là 521
Câu 4: Cho p là số nguyên tố lớn hơn 3 Biết p + 2 cũng là số nguyên tố Chứng minh rằng p + 1 chia hết
cho 6
Giải
Vì p là số nguyên tố lớn hơn 3 nên p có dạng 6k-1 hoặc 6k+1nếu p=6k+1 thì p+2=6k+3=3(2k+1)chia hết cho 3 và lớn hơn 3 nên là hợp số(vô lí) do đó p=6k-1⇒p+1=6k chia hết cho 6(đpcm)
Câu 5: Một số nguyên tố p chia cho 42 có số dư r là hợp số Tìm số dư r
Giải
Ta có:
p = 42.k + r = 2.3.7.k + r
Vì r là hợp số và r < 42 nên r phải là tích của 2 số r = x.y
x và y không thể là 2, 3, 7 và cũng không thể là số chia hết cho 2, 3, 7 được vì nếu thế thì p không là số nguyên tố
Vậy x và y có thể là các số trong các số {5,11,13, }
Trang 4Nếu x=5 và y=11 thì r = x.y =55 > 42
Vậy chỉ còn trường hợp x = 5, y = 5 Khi đó r = 25
Câu 6: Hai số nguyên tố sinh đôi là hai số nguyên tố hơn kém nhau 2 đơn vị Tìm hai số nguyên tố sinh
đôi nhỏ hơn 50
Giải
Các số nguyên tố sinh đôi nhỏ hơn 50 là:3 và 5; 5 và 7; 11 và 13; 17 và 19; 29 và 31; 41 và 43
Câu 7: Tìm số nguyên tố, biết rằng số đó bằng tổng của hai chữ số nguyên tố và bằng hiệu của hai số
nguyên tố
Giải
Giả sử a, b, c, d, e là các số nguyên tố (d > e)
Theo bài ra ta có: a = b + c = d – e (*)
Từ (*) ⇒ a > 2 ⇒ a là số nguyên tố lẻ
+ b + c = d – e là số lẻ.do b, d là các số nguyên tố ⇒ b, d là số lẻ ⇒ c, e là số chẵn
+ c = e = 2 (do e, c là các số nguyên tố)
+ a = b + 2 = d – 2 ⇒ d = b + 4,vậy ta cần tìm số nguyên tố b sao cho b + 2, b + 4 cũng là số nguyên tố + b = 3
Vậy số nguyên tố cần tìm là 5
Trang 5Website HOC247 cung cấp một môi trường học trực tuyến sinh động, nhiều tiện ích thông minh, nội
dung bài giảng được biên soạn công phu và giảng dạy bởi những giáo viên nhiều năm kinh nghiệm, giỏi
về kiến thức chuyên môn lẫn kỹ năng sư phạm đến từ các trường Đại học và các trường chuyên danh
tiếng
I.Luyện Thi Online
- Luyên thi ĐH, THPT QG: Đội ngũ GV Giỏi, Kinh nghiệm từ các Trường ĐH và THPT danh tiếng xây
dựng các khóa luyện thi THPTQG các môn: Toán, Ngữ Văn, Tiếng Anh, Vật Lý, Hóa Học và Sinh Học
- Luyện thi vào lớp 10 chuyên Toán: Ôn thi HSG lớp 9 và luyện thi vào lớp 10 chuyên Toán các trường
PTNK, Chuyên HCM (LHP-TĐN-NTH-GĐ), Chuyên Phan Bội Châu Nghệ An và các trường Chuyên
khác cùng TS.Trần Nam Dũng, TS Pham Sỹ Nam, TS Trịnh Thanh Đèo và Thầy Nguyễn Đức Tấn
II.Khoá Học Nâng Cao và HSG
- Toán Nâng Cao THCS: Cung cấp chương trình Toán Nâng Cao, Toán Chuyên dành cho các em HS
THCS lớp 6, 7, 8, 9 yêu thích môn Toán phát triển tư duy, nâng cao thành tích học tập ở trường và đạt
điểm tốt ở các kỳ thi HSG
- Bồi dưỡng HSG Toán: Bồi dưỡng 5 phân môn Đại Số, Số Học, Giải Tích, Hình Học và Tổ Hợp dành
cho học sinh các khối lớp 10, 11, 12 Đội ngũ Giảng Viên giàu kinh nghiệm: TS Lê Bá Khánh Trình, TS Trần Nam Dũng, TS Pham Sỹ Nam, TS Lưu Bá Thắng, Thầy Lê Phúc Lữ, Thầy Võ Quốc Bá Cẩn cùng đôi HLV đạt thành tích cao HSG Quốc Gia
III.Kênh học tập miễn phí
- HOC247 NET: Website hoc miễn phí các bài học theo chương trình SGK từ lớp 1 đến lớp 12 tất cả các
môn học với nội dung bài giảng chi tiết, sửa bài tập SGK, luyện tập trắc nghiệm mễn phí, kho tư liệu
tham khảo phong phú và cộng đồng hỏi đáp sôi động nhất
- HOC247 TV: Kênh Youtube cung cấp các Video bài giảng, chuyên đề, ôn tập, sửa bài tập, sửa đề thi
miễn phí từ lớp 1 đến lớp 12 tất cả các môn Toán- Lý - Hoá, Sinh- Sử - Địa, Ngữ Văn, Tin Học và Tiếng Anh
Vững vàng nền tảng, Khai sáng tương lai
Học mọi lúc, mọi nơi, mọi thiết bi – Tiết kiệm 90%
Học Toán Online cùng Chuyên Gia
HOC247 NET cộng đồng học tập miễn phí HOC247 TV kênh Video bài giảng miễn phí