Đường tròn tâm I đường kính OA cắt AB, AC lần lượt tại M và N (M,N không trùng với A).. Chứng minh rằng M, N lần lượt là trung điểm của AB và AC.[r]
Trang 1SỞ GD–ĐT THÁI BèNH ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYấN THÁI BèNH
Năm học : 2009-2010
Mụn thi: TOÁN
Thời gian làm bài: 120 phỳt (khụng kể thời gian giao đề)
Đề thi gồm : 01 trang Bài 1 ( 2.5 điểm) Cho
a Rỳt gọn A
b Tỡm cỏc giỏ trị của x để
A
8
Bài 2 ( 2,0 điểm) Cho parabol (P): yx2và đường thẳng (d): y(2m 1)x m 2m (m là tham số).
a Chứng minh rằng (d) luụn cắt (P) tại 2 điểm phõn biệt
b Tỡm cỏc giỏ trị của m để (d) cắt (P) tại 2 điểm phõn biệt cú hoành độ là x , x sao cho:1 2
x x 1
Bài 3 (1.5 điểm) Giải hệ phương trỡnh sau :
2
Bài 4 (3,0 điểm) Cho tam giỏc nhọn ABC nội tiếp đường trũn tõm O bỏn kớnh R (AB<AC).
Đường trũn tõm I đường kớnh OA cắt AB, AC lần lượt tại M và N (M,N khụng trựng với A) Gọi H là hỡnh chiếu vuụng gúc của A trờn BC
a Chứng minh rằng M, N lần lượt là trung điểm của AB và AC
b Chứng minh rằng
AB.AC R
2AH
c Kẻ dõy cung AE của đường trũn tõm I đường kớnh OA song song với MN Gọi F là giao điểm của MN và HE Chứng minh rằng F là trung điểm của đoạn thẳng MN
Bài 5 ( 1,0 điểm) Cho a, b, c là cỏc số dương thỏa món: a b c 3
========= Hết =========
Cỏn bộ coi thi khụng giải thớch gỡ thờm
Họ và tờn thớ sinh:……….……… Số bỏo danh:……….
đề chính thức