1. Trang chủ
  2. » Trung học cơ sở - phổ thông

slide 1 chuyển động của trái đất quanh mặt trời theo 1 quỹ đạo elip hết 1 vòng là 1 năm có 365 ngày ¼ f1 f2 elip tiõt 19 elýp tiõt 1 §þnh nghüa elýp ph­¬ng tr×nh chýnh t¾c cña elýp c¸c vý dô minh ho

16 14 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 411,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

[r]

Trang 1

Chuyển động của Trái đất quanh mặt trời theo 1

quỹ đạo Elip hết 1 vòng là 1 năm có 365 ngày ¼.

F1

F2

Trang 2

ELIP 2

TiÕt 19: ElÝp

(TiÕt 1)

• §Þnh nghÜa ElÝp

• Ph ¬ng tr×nh chÝnh t¾c cña ElÝp

• C¸c vÝ dô minh ho¹

Trang 3

 Cách vẽ elíp

• Định nghĩa

Trong mặt phẳng cho hai điểm cố định F1,F2: F1F2=2c>0

Tập hợp những điểm M trong mặt phẳng sao cho MF1+MF2=2a (a>c) gọi là một elíp

* F1,F2: gọi là các tiêu điểm của elíp

* F1F2=2c: gọi là tiêu cự của elíp

* M thuộc elíp, MF ,MF : Các bán kính qua tiêu

F2

F1

M

1.Định nghĩa đ ờng Elíp

a MF

MF E

M  ( )  1  2  2

Trang 4

ELIP 4

Bài tập TNKQ

Hăy chọn ph ơng án đúng

Cho hai điểm F1,F2; F1F2=4

Trong các quĩ tích sau quĩ tích nào là Elíp

a) Tập hợp điểm M trong mặt phẳng: MF1-MF2=6

b) Tập hợp điểm M trong mặt phẳng: MF1+MF2=3 c) Tập hợp điểm M trong mặt phẳng: MF1+MF2=6

Trang 5

Xác định toạ

độ F1 , F2 ?

2 Ph ơng trình chính tắc của Elíp

 Cho Elíp (E) trong hệ trục toạ độ nh hình vẽ

 Ta có:

 Ph ơng trình của Elíp:

Ph ơng trình trên gọi là ph ơng trình chính tắc của elíp

) 0

; ( ),

0

;

1

F  c F c

2 2

2 2

2

2

2

;

b

y a

x

a

cx a

MF a

cx a

MF1   ; 2   F1 F2

M y

x O

?

Trang 6

ELIP 6

Chú ý

Chọn hệ trục toạ độ sao cho: F1(0;-c), F2(0;c)

thì ph ơng trình của Elíp là:

2 2

2 2

2

2

2

;

a

y b

x

y

x

F1(o;-c)

F2(o;c)

o (0;a)

(0:-a)

(b:0) (-b;0)

Đây không là ph ơng trình chính

tắc của Elíp

Đây có phải là ph ơng

trình chính tắc của

Elíp

?

Trang 7

VÝ dô 1

Trong c¸c ph ¬ng tr×nh sau ®©y ph ¬ng tr×nh

nµo lµ ph ¬ng tr×nh chÝnh t¾c cña ElÝp

1 3

2 )

2 2

y

x

16 9

)

2 2

y

x b

1 4

9 )

2 2

y x

c

Trang 8

ELIP 8

Ví dụ 2

Cho Elíp :4x 2 +9y 2 =36 (E)

a) Tìm toạ độ 2 tiêu điểm, tiêu cự của (E)

b) Điểm M thuộc (E) có hoành độ x=1.

Tìm bán kính qua tiêu của điểm M

Lời giải:

(E):

=> a=3, b=2, a) +Toạ độ hai tiêu điểm :

+Tiêu cự : b)Các bán kính qua tiêu của M:

1 4

9

2 2

y

x

5 4

9

2 2

a b c

5 2 2c

F

F1 2  

3

5 3

; 3

5

1        

a

cx a

MF a

cx a

MF

) 0

; 5 (

);

0

; 5

F 

2 2

2 2

2 2

2

;

1 b a c b

y a

x

Ph ơng trình chính tắc của Elíp

Trang 9

ví dụ 3

Viết ph ơng trình chính tắc của Elíp biết elíp đó có

một tiêu điểm F2(1;0) và đi qua điểm A(0;3)

Lời giải:

+Giả sử PT Elíp (E) đó có dạng:

+Vì tiêu cự của (E) là F2(1;0) nên c=1

+Vì (E) qua A(0;3) nên b2=9

=>a2=b2+c2=9+1=10

+Vậy ph ơng trình chính tắc của (E) là:

0

;

1 2

2 2

2

b

y a

x

1

2 2

x

Trang 10

ELIP 10

Củng cố

Các cần em nắm đ ợc:

 Khái niệm về Elíp, tiêu điểm, tiêu cự, bán kính qua tiêu

 Viết ph ơng trình chính tắc của Elíp

 Tìm toạ độ tiêu điểm, tìm tiêu cự và các bán kính qua tiêu

BTVN: bài1, 2c,d Sgk trang 29

Trang 11

Cho điểm M(x;y) thuộc (E) hãy tính :

MF12=?

MF22=?

Từ đó suy ra: MF12- MF22= ?

=>MF1= ?

MF2= ?

M y

x O

Trang 12

ELIP 12



a

cx a

MF

a

cx a

MF a

xc MF

MF

MF

MF MF

MF

a MF

MF

xc MF

MF

y c

x MF

y c

x MF

2

1

2 1

2 2

2 1 2

1

2 1

2 2

2 1

2 2

2

2

2 2

2

1

2 2

4

) (

) (

Ta cã

Trang 13

2 2

2 2

2

2

2

2 2

2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2

2

1

1

; 1

1 )

(

) (

) (

) (

) (

) (

c a

b b

y a

x c

a

y a

x

c a

a y

a x

c a

y c

x a

cx a

y c

x MF

a

cx a

MF

Ta cã

Trang 14

ELIP 14

C¾t h×nh trô bëi mét mÆt ph¼ng kh«ng vu«ng gãc

víi trôc cña h×nh trô ta ® îc thiÕt diÖn lµ mét ElÝp

Trang 16

ELIP 16

Ngày đăng: 18/04/2021, 15:50

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w