-Pheùp dôøi hình bieán 3 ñieåm thaúng haøng thaønh 3ñieåm thaúng haøng vaø baûo toaøn thöù töï; bieán ñöôøng thaúng thaønh ñöôøng thaúng; bieán tia thaønh tia; bieán ñoaïn thaúng th[r]
Trang 1DỜI
HÌNH
VÀ
PHÉP
ĐỒNG
DẠNG
TRONG
MẶT
PHẲNG
(11
tiết)
1
1
1
* Kiến thức:
Biết định nghĩa phép biến hình
*Kĩ năng:
Dựng được ảnh của 1 điểm qua phép biến hình đã cho
*Kiến thức:
Biết được:
-Định nghĩa phép tịnh tiến -Tính chất củaphép tịnh tiến
-Biểu thức toạ độ
*Kĩ năng:
Dựng được ảnh của một điểm, 1
đoạn thẳng ,1 tam giác qua phép tịnh tiến
*Kiến thức:
Biết được:
-Địnhnghĩa;Tính chất phép đxứng trục
-Biểu thức toạ độ của phép đối xứng trục qua mỗi trục đối xứng
-Trục đối xứng của một hình, hình có trục đối xứng
*Kĩ năng:
-Dựng được ảnh của một điểm, 1
đoạn thẳng ,1 tam giác qua phép đối xứng trục
-Xác định được biểu thức toạ độ ; trục đối xứng của một hình
*Kiến thức:
Biết được -Định nghĩa ;tính chất phép đối xứng tâm
-Biểu thức toạ độ của phép đối xứng qua gốc toạ độ
-Tâm đối xứng của 1 hình;
1.Phép biến hình
F:M M’ sao cho M’ là duy nhất
2.Phéptịnh tiến
Tv(M) =M’
*M(x,y);
M’(x’,y’),v a b( , )
'
'
x x a
y y b
3.Phép đối xứng trục
*Đd(M) = M’
d đường trung trực của MM’
* Đd(M) = M’
Đd(M’) = M
*Btthức toạ độ đối xứng qua trục
Ox
' '
x x
Btthức toạ độ đối xứng qua trục Oy
' '
y y
4.Phép đối xứng tâm
*ĐI(M) =M’
I là trung điểm MM’
*Biểu thức toạ độ của phép đối
Gợi mở, vấn đáp, điều khiển tư duy theo hoạt động nhóm
Gợi mở, vấn đáp, điều khiển tư duy theo hoạt động nhóm
Gợi mở, vấn đáp, điều khiển tư duy theo
-Thước thẳng, Com pa
-GV:
Một số hình vẽ minh hoạ:
phép tịnh tiến (h1.4,h1 7
Phép đối xứng trục (h115, h116) phép đối xứng tâm (h120, h121, h124) phép quay (h128,h1 36) Phép dời hình (h142) Phép vị tự(h150, h151a, h153,154 ,155) -Phiếu bài tập
-HS:
Các kiến thức đã học của hình học phẳng
Trang 2Chương tiết KIẾN THỨC GV-HS chú
2
1
1
hình có tâm đối xứng
*Kĩ năng:
-Dựng đựơc ảnh của 1 điểm ,1 đoạn thẳng, 1 tam giác qua 1 phép đối xứng tâm
-Xác định được biểu thức toạ độ, tâm đối xứng của một hình
*Kiến thức:
Biết được -Định nghĩa, tính chấtcủa phépquay
*Kĩ năng:
-Dựng được ảnh của 1 điểm,1đoạn thẳng, 1 tam giác qua 1 phép quay
*Kiến thức:
-Khái niệm phép dời hình;
-Phép tịnh tiến, đối xứng trục ,đối xứng tâm, phép quay là phép dời hình
-Nếu thực hiện liên tiếp 2 phép dời hình thì ta được 1 phép dời hình;
-Phép dời hình biến 3 điểm thẳng hàng thành 3điểm thẳng hàng và bảo toàn thứ tự; biến đường thẳng thành đường thẳng; biến tia thành tia; biến đoạn thẳng thành đoạn thẳng bằng nó; biến tam giác thành tam giác bằng nó;
biến góc thành góc bằngnó;
Biến đườngtròn thành đtròn có cùng bán kính
-Khái niệm 2 hình bằng nhau
*Kĩ năng:
-Bước đầuvận dụng phép dời hình trong 1 số bài tập đơn giản
*Kiến thức:
-Định nghĩaphép vị tự; tính chất: nếu phép vị tự biến 2
xứng quagốc toạ độ O:
' '
5.Phép quay
*Q(O, )(M) = M’
'
OM OM
*Q(O, )(d) =d’
thì (d,d’)=
6.Khái niệâm về phép dời hình và hai hình bằng nhau
7.Phép vị tự
hoạt động nhóm
Gợi mở, vấn đáp, điều khiển tư duy theo hoạt động nhóm
Gợi mở, vấn đáp, điều khiển tư duy theo hoạt động nhóm
Gợi mở, vấn đáp, điều khiển tư
Trang 3điểm M,N thành 2 điểm M’,N’ thì
A B k AB
A B k AB
Ảnh của 1 đường tròn qua 1 phép vị tự
*Về kĩ năng:
-Dựng được ảnh của1điểm,đg thẳng
đtròn,…qua 1phép vị tự
-Bước đầu vận dụng được tính chất của phép vị tự để giải bài tập
*Về kiến thức:
Biết được -Khái niệm phép đồng dạng;
-Phép đồng dạng biến 3 điểm thẳng hàng thành 3 điểm thẳng hàng và bảo toàn thứ tự cácđiểm;biến đg
thẳng thành đg thẳng; biến tam giác thànhtamgiác đồng dạng với nó;biến đg tròn thành đg tròn;
-Khái niệm hai hình đồng dạng
*Về kĩ năng :
-Xác định được phép đồng dạng biến 1 trong 2 đường tròn cho trước thành đgtròn còn lại
'
OM kOM
*Hai đường tròn bất kì luôn có 1phép vị tự biến đường tròn này thành đường tròn kia, tâm của phép Vị tự đó gọi
la øtâmvị tự của 2 đgtròn
8.Phép đồng dạng
Khái niệm về phép đồng dạng và hai hình đồng dạng nhau
*Hai hình đồng dạng nhau nếu có 1phép đồng dạng biến hình này thành hình kia
duy theo hoạt động nhóm
Gợi mở, vấn đáp, điều khiển tư duy theo hoạt động nhóm
Chương2
:ĐƯỜN
G
THẲNG
VÀ
MẶT
PHẲNG
TRONG
KHÔNG
GIAN
QUAN
HỆ
SONG
SONG.
(16
tiết)
3 *Về kiến thức:
-Biết các tính chất được thừa nhận: tc1tc6
-Biết được 3 cách xác định mặt phẳng
-Biết được khái niệm hình chóp; hình tứ diện
*Về kĩ năng :
-Vẽ được hình biểu diễn của
1 số hình không gian đơn giản
-Xác định được giao tuyến của 2 mặt phẳng; giao điểm
1.Đại cương về đường thẳng và mặtphẳng:
-Mở đầu về hình học không gian
-Các tính chất được thừanhận -Ba cách xác định mặt phẳng
-Hình chóp và tứ diện
Gợi mở, vấn đáp, điều khiển tư duy theo hoạt động nhóm
Kiến thức hình học phẳng
-GV:
thươc thẳng bảng phụ tổng kết củng cố phiếu bài tập
HS:
Trang 4Chương tiết KIẾN THỨC GV-HS chú
2
3
của 2 đgthẳng và mặt phẳng -Biết sử dụng giao tuyến của
2 mặt phẳng để cm 3điểm thẳng hàng trong không gian
-Xác định được đỉnh, cạnh bên, mặt bên, mặt đáy của hình chóp
*Về kiến thức:
-Biết khái niệm 2 đgthg trùng nhau, song song, cắt nhau, chéo nhau trong không gian
-Biết được hệ quả (đl2) để tìm giao tuyến của 2mặt phẳng, hoặc chứng minh 2 đgthg song song
*Về kĩ năng :
-Trong hình vẽ xác định được
vị trí của 2đường thẳng nào đó
-Biết chứng minh 2 đgtg song song
-Biết áp dụng định lý để xđ giao tuyến của 2mặt phẳng
*Về kiến thức:
-Biết khái niệm và điều kiện để đường thẳng và mặt phẳng song song
-Biết định lý:”Nếu đường thẳng a song song mf(P) thì mọi mf(Q) chứa a và cắt (P) thì cắt theo giao tuyến song song với a”
*Về kĩ năng :
-Xác định được vị trí tương đối giữa đườngthẳng và mặt phẳng
-Biết vẽ hình biểu diễn đgthg song song mf; chứng minh một đường thẳng song song mặt phẳng
-Biết dựa vào định lý để xác định giao tuyến của 2 mf
*Về kiến thức:
2.Hai đường thẳng chéo nhau và hai đường thẳng song song:
- Vị trí tương đối của 2 đường thẳng
-Hai đường thẳng song song:
,
a b
a b
a b
3.Đường thẳng và mặt phẳng song song.
-Vị trí tương đối của đường thẳng và mặt phẳng
-Điều kiện đgtg song song mf:
:
a a
4.Hai mặt phẳng song song Hình lăng trụ và hình
Gợi mở, vấn đáp, điều khiển tư duy theo hoạt động nhóm
Gợi mở, vấn đáp, điều khiển tư duy theo hoạt động nhóm
Gợi mở,
Đọc soạn trước bài học
Trang 52
Biết được:
-Khái niệm và điều kiện để 2
mf song song
-Định lý ta-lét trong không gian;
-Khái niệm hình lăng trụ,hình hộp, hình chóp cụt
*Về kĩ năng :
-Biết cách chứng minm 2 mp song song
-Vẽ được hình biểu diễn của hình hộp, hình lăng trụ, hình chóp cụt có đáy là tam giác, tứ giác
*Về kiến thức:
Biết được:
-Khái niệmphép chiếu song song;
-Khái niệm hình biểu diễn của 1 hình không gian
*Về kĩ năng :
-Xác định được phương chiếu,
mf chiếu trong 1 phép chiếu
hộp.
, , ,
a b
*Hình lăng trụ:
-Hai đáy là hai
đa giác bằng nhau và nằm trên hai mf song song
-Các mặt bên là những hình bình hành –Các cạnh bên bằng nhau và song song với nhau
*Hình hộp:
-Lăng trụ có đáy là hình bình hành
Có 6 mặt là hình bình hành
*Hình chóp cụt:
-Hai đáy là hai
đa giác đồng dạng nhau và nằm trên hai mp song song
-Các mặt bên là những hình thang -Cácđườngthẳng chứa cáccạnh bên đồng quy tại
1 điểm
5.Phép chiếu song song.Hình biểu diễn của một hình không gian.
*Phép chiếu song song lên mf
theo phương :
' ' : '
MM
vấn đáp, điều khiển tư duy theo hoạt động nhóm
Gợi mở, vấn đáp, điều khiển tư duy theo hoạt động nhóm
Trang 6Chương tiết KIẾN THỨC GV-HS chú
song song Dựng được ảnh của 1 điểm,
1đoạn thẳng, 1 tam giác, 1đgtròn qua 1 phép chiếu song song
-Vẽ được hình biểu diễn của1 hình trong không gian
Chương3
VECTƠ
TRONG
KHÔNG
GIAN.
QUAN
HỆ
VUÔNG
GÓC
TRONG
KHÔNG
GIAN.
(18
tiết)
2
3
*Về kiến thức:
Biết được -Quy tắc hình hộp để cộng vectơ trong
không gian;
-Khái niệm và điều kiện đồng phẳng của 3 vectơ trong không gian
*Về kĩ năng :
-Xác định được góc giữa 2 vectơ trongkhônggian
-Vận dụng được phép cộng trừ vectơ, nhân vectơ với 1 số,tích vô hướng của 2 vectơ, sự bằng nhau của 2 vectơ trong không gian
-Biết cách xét sự đồng phẳng hoặc không đồng phẳng của 3 vectơ trong không gian
*Về kiến thức:
Biết được -Khái niệmvectơ chỉ phương của đgthg;
-Khái niệm góc giữa 2 đgthẳng;
-Khái niệm và điều kiện để 2 đgthg vuông góc;
*Về kĩ năng :
-Xác định được vectơ chỉphương của đgthg; góc giữa 2 đgthg
-Biết chứng minh 2 đgthg vuông góc nhau
1.Vectơ trongkhông gian.
Vectơ.Cộng trừ vectơ
Nhân 1 số với vectơ
Điều kiện đồng phẳng của 3 vectơ
-,
a b
không cùng phương và c
,
a b
,cđồngphẳng
c ma nb
2.Hai đường thẳng vuông góc.
-Vectơ chỉ phương của 2 đgthg:
alà chỉ phương d nếu giá song song hoặc trùng d
-Góc giữa 2đgthg:
(a^,b) = (a’^b’) với
a a b b
a b I
Gợi mở, vấn đáp, điều khiển tư duy theo hoạt động nhóm
Gợi mở, vấn đáp, điều khiển tư duy theo hoạt động nhóm
Gợi mở, vấn đáp,
-Kiến thức vectơ
-Kiến thức chương song song
-Gv:
bảng phụ tóm tắt lý thuyết củng cố sau mỗi bài.;
phiếu bài tập
-HS:kiến
thức cũ;
Đọc và soạn trước bài học
Trang 73
*Về kiến thức:
Biết được -Định nghĩa và điều kiện đgthg vuông góc mf
-Khái niệmphép chiếu vuông góc;
-Khái niệm mặt phẳng trungtrực
của đoạn thẳng
*Về kĩ năng :
-Biết cách chứngminh đường thẳng vuông góc mp , đgthg vuông góc đgthg
-Xác định được hình chiếu vuông góc của 1 điểm, 1 đgthg, 1 tam giác
-Vận dụng được định lí 3đường vuông góc
-Xác định được góc giữa đường thẳng và mf
-Biết xét mối liên hệ giữa song song và vuông góc của đgthg và mf
*Về kiến thức:
Biết được -Khái niệm góc giữa 2 mp;
-Khái niệm và đk 2 mặt phẳng vuông góc
-Tính chất các hình : lăng trụ đứng, hìnhhộp chữ nhậthình lập phương
-Khái niệm hình chóp đều, hình chóp cụt đều
*Về kĩ năng :
-Xác định được góc giữa 2 mf
-Biết chứng minh 2 mp vuông góc
-Vận dụng được tính chất các hình để giải bài tập
-Hai đường thẳng vuông góc:
( ^ ) 90
a b a b
3.Đườngthẳng vuông góc mặt phẳng.
*ĐN:
d a
d
*ĐK đg thg vuông góc mf:
, , ,
d a d b
a b I a b d
*Phép chiếu vuông góc là phép chiếu song song có phương chiếu vuông góc
mf chiếu
*Góc giữa đường thẳngvà mf:
(d,) = (d,d’) với d’ là hình chiếu của d trên
4.Hai mặt phẳng vuông góc
*Góc giữa 2 mặt phẳng:
( , ) ( , ) ,
a b
*ĐN:
( , ) 90
*Hình lăng tru đứng
Là lăng trụ có cạnh bên vuông góc mặt đáy
*Hình hộp chữ nhật
Lăng trụđứng có cạnh bên vuông góc mặt đáy
Hình lập phương
điều khiển tư duy theo hoạt động nhóm
Gợi mở, vấn đáp, điều khiển tư duy theo hoạt động nhóm
Trang 8Chương tiết KIẾN THỨC GV-HS chú
3
*Về kiến thức,kĩ năng:
Biếtđược&xác định -Khoảng cách :1 điểm đến đường thẳng, mặt phẳng;
Giữa đường thẳng và mặt phẳng; giủa 2mặt phẳng; giữa
2 đgthg -Đường vuông góc chung của
2 đường thẳng chéo nhau
Lăng trụ đứng có đáy và các mặt bên
là hình vuông
*Hình chóp đều:
Hình chóp cóđáy là đa giác đềuvàđường cao có chân trùng tâm đa giác đáy
*Hình chóp cụt đều:
Phần nằm giữa đáy và1 thiết diện song song đáy.đứng có đáy là hình chữnhật
5.Khoảng cách.
*d(O,a)=OH với
OHa tại H
*d(O, ) =OH với
OH tại H
*
O a
*
, ( , )d d O( , )
O
*Khoảng cách 2 đường thẳng chéo nhau:
+Độ dài đoạn vuông góc chung
+K/c đường thẳng này với mp song song chứa đường thẳng kia
+K/c 2 mp song song lần lượt chứa 2đườg thẳng
Gợi mở, vấn đáp, điều khiển tư duy theo hoạt động nhóm