MÉu thøc chung ®¬n gi¶n nhÊt cña.. chóng lµ:.[r]
Trang 1KIấ̉M TRA 15’ ( chơng 1).
MễN TOÁN (ĐS) ( đề số 1)
A – Trắc nghiệm: Chọn đáp ỏn đỳng nhất
Bài 1: Giỏ trị của biểu thức x2 2x 12
tại x 2là:
Bài 2: Tỡm x, biết: x2 – 2x +1 = 16
a/
1 4
x
B – Điền dấu “x” thớch hơp vào ụ trống:
1 x 2 x2 4x 4 x3 8
2 x2 12 1 x2
3x 1 3x x x 1
4 x 1 1 x x2 1
a b b a
C – Tự luận:
Thực hiện phộp tớnh:
a/ x x2 3 x3
b/ x 2x3 x4 3x x 2
Đáp án
A Trắc nghiệm
Bài 1: d ( 1 điểm)
Bài 2: b ( 1 điểm)
B Mỗi ý đúng đợc 0,5 điểm
Câu 1: Sai Câu 2:Sai Câu 3:Đúng Câu 4:Sai Câu 5:Đúng
C Tự luận:
a x x2 3 x3
= 2x2 – 3x + x4 ( 2 điểm)
b Tính đúng đợc 3,5 điểm
KIấ̉M TRA 15’ ( chơng 1)
MễN TOÁN (ĐS)
Trang 2( đề số 2)
A – Trắc nghiệm: ( 4,5 điểm) Chọn đỏp ỏn đỳng nhất
Bài 1: Giỏ trị của biểu thức x2 2x 12
tại x 5là:
Bài 2: Tỡm x, biết: (x2 + 4)x – x2 = 27
a/
1 3
x
bài 3: Điền dấu “x” thớch hơp vào ụ trống:
3x 1 3x x x 1
3 x 2 x2 2x 2 x3 8
a b b a
5 x 1 1 x x2 1
B – Tự luận: ( 5,5 điểm)
Thực hiện phộp tớnh:
a/ x x2 2 3x 4x3
b/ x 2x3 x4 3x2 x
đáp án
Bài 1: b ( 1 điểm)
Bài 2: b ( 1 điểm)
Bài 3: Mỗi ý đúng đợc 0,5 điểm
3x 1 3x x x 1
B – Tự luận: ( 5,5 điểm)
a x x2 2 3x 4x3
= x 4 - 3x3 + 4x5
( 2 điểm)
b Đúng đợc 3,5 điểm
Trang 3môn đại số 8 (đề số 3).
Bài 1
Hãy ghép mỗi câu ở cột A với một câu ở cột B để đợc hằng đẳng thức đúng
1.(x-1).(x2 + x + 1)
2.x2 + 2x + 1
3.9x2 + y2 + 6xy
4 y3 + 3xy2 + 3x2y + x3
a.(x + y)3
b.(x + 1)2
c x3 – 1
d x3 + 1
e (3x + y)2
g (x – y)3
Bài 2:
Điền đơn thức thích hợp vào chỗ có dấu ( ) để đợc các hằng đẳng thức đúng
1/ a2 + 6ab + = ( + 3b)2
2/ (a + ) ( – 2) = a2 – 4
Bài 3:
Phân tích các đa thức sau thành nhân tử
a x2 – 25
b x3 – 2x2
c 3a – 6b
d a2 – 2a + 1
đáp án và biểu điểm.
2 1/ a2 + 6ab + 9b 2 = (a + 3b)2
2/ (a + 2) (a – 2) = a2 – 4
0,5- 0,5 0,5-0,5
3 a x2 – 25 = x2 – 52 = (x+5).(x-5)
b x3 – 2x2 = x2.x – 2.x2 = x2.(x-2)
c 3a – 6b = 3.a – 3.2b = 3.(a-2b)
d a2 – 2a + 1 = a2 – 2.a.1 + 12 = (a-1)2
0,5-0,5 0,5-0,5 0,5-0,5 0,5-0,5
KIấ̉M TRA 15’ ( chơng 1)
MễN TOÁN (ĐS) ( đề số 4)
Trang 4A – Trắc nghiệm: Điền dấu “x” thớch hơp vào ụ trống
1 x 2 x2 4x 4 x3 8
2 x2 12 1 x2
3x 1 3x x x 1
4 x 1 1 x x2 1
a b b a
B Tự luận:
Phân tích các đa thức sau thành nhân tử
a x2 – 25
b x3 – 2x2
c 3a – 6b
Đáp án:
A- trắc nghiệm : Mỗi ý đúng đợc 1 điểm
Câu 1: sai
Câu 2: sai
Câu 3: đúng
Câu 4: sai
Câu 5: đúng
B Tự luận:
a x2 - 25 = (x-5)(x+5) (2 điểm)
b x3 – 2x2 = x2(x- 2) (2 điểm)
c 3a – 6b = 3(a – 2b) (1 điểm)
KIấ̉M TRA 15’ ( chơng 1)
MễN TOÁN (ĐS) ( đề số 5)
A – Trắc nghiệm: ( 4 điểm) Chọn đỏp ỏn đỳng nhất
Trang 5Bài 1: Giỏ trị của biểu thức x2 2x 12
tại x 5là:
Bài 2: Tỡm x, biết: (x2 + 4)x – x2 = 27
a/
1 3
x
Bài 3: Giỏ trị của biểu thức x2 2x 12
tại x = 3 là:
Bài 4: Tỡm x, biết: x2 + x = 12
a/
1 3
x
B– Tự luận: ( 6 điểm)
Thực hiện phộp tớnh:
a/ x x2 2 3x 4x3
b/ x 2x3 x4 3x2 x
Đáp án:
A – Trắc nghiệm: ( 4 điểm) Mỗi ý đúng đợc 0,5 điểm
Bài 1; b
Bài 2:b
Bài 3: d
Bài 4: b
B– Tự luận: ( 6 điểm)
a 3 điểm
b 3 điểm
kiểm tra 15 phút (Chơng 2).
Môn: Đại Số (Đề số 1)
Chọn đáp án đúng nhất, trừ câu 1.
Câu 1: Điền vào chỗ trống trong mỗi đẳng thức sau một đa thức thích hợp.
a) x - y
4 - x=
5 - x
x2 - 25= -
1
Trang 6Câu 2: Đa thức thích hợp ở chỗ trống trong đẳng thức: 1 - 2x
x2 + x + 1=
.
x3 - 1
là:
A 1 – 2x B x – 1 C - 2x2 + 3x - 1 D - x4 + x3 + 2x – 1
x3 - 1;
1 - 2x
x2+ x + 1 ; - 5 Mẫu thức chung đơn giản nhất của
chúng là:
A x2 + x + 1 B x3 – 1 C (x3 – 1)( x2 + x + 1) D (-5) (x3 – 1) ( x2 + x + 1)
9x4 - 9 là:
A 7(x - 1)
9 ¿ ¿ B 7
9 ¿ ¿ C 7(x - 1)
9(x + 1)(x2
+ 1) D
7
9(x2+ 1)
4 x2− 1 xác định với điều kiện:
A x1
2 ; B x−
1
2 ; C x
; x
; D với mọi x
Đáp án
Mỗi câu đúng đợc 2 điểm
Câu 1 :a : y- x b : 5 + x
Câu 2 : C
Câu 3 : B
Câu 4 : D
Câu 5 : C
kiểm tra 15 phút (Chơng 2).
Môn: Đại Số (Đề số 2) A- Trắc nghiệm ( 5 điểm).
1.Phân thức đối của phân thức −3 x
x +1 là:
A 3 x
− x − 1 B
3 x
x −1 C
3 x 1− x D
3 x
x+1
2 Kết quả rút gọn phân thức x2− xy
5 xy − 5 y2 là:
Trang 7A x2
5 y2+5 B −
1
5 C
x
5 y D
−2 x
5 y
3 Cặp phân thức nào sau đây không bằng nhau:
A 20 xy
28 x và
5 y
7
B −1
2 và
15 x
−30 x
C 7
28 x và
5 y
20 xy
D − 1
15 x và
−2
−30 x
4 Tính x+1
2 −
x −1
2 bằng:
A 0 B 1 C −1
2 D
1 2
5 Điều kiện xác định của phân thức x+1
(x − 2)( y+3) là:
A x 2 B x 2 , y -3 C y -3 D x 2 , y 3
x2−1
a) Tìm điều kiện của x để giá trị cuả phân thức M đợc xác định
b)Tính giá trị của M tại x = 2
Đáp án.
A- Mỗi câu đúng đợc 1 điểm
B a x 1, x -1 2,5 điểm
b x = 2 => M = 3 2,5 điểm
kiểm tra 15 phút (Chơng 2).
Môn: Đại Số (Đề số 3)
A Trắc nghiệm Chọn đáp án đúng ( 6 điểm).
1 Phân thức đối của phân thức 3 x
− x − 1 là:
A −3 x
x +1 B
3 x
x −1 C
3 x 1− x D
3 x
x+1
2 Đa thức M trong đẳng thức x2−2
M
2 x +2 bằng:
A 2x2- 2 B 2x2- 4 C 2x2+ 2 D 2x2+ 4
3 Thực hiện phép tính x+2
x −1
2 =
A x2
+x +4
2 B
2 x +1
x +2 C
x2 +x +4
2 x D 2 +
x −1
2
4 Kết quả rút gọn phân thức x2−2 x+1
x2− 1 là:
Trang 8A 1 B -1 C 2x D x −1
x +1
5 Điều kiện xác định của phân thứcx2−2 x
x2−1 là:
A x 1 B x -1 C x 1, x -1 D x 0
6 Mẫu thức chung có bậc nhỏ nhất của ba phân thức : 2 x
x2−9 ;
x −1
¿ ¿ là
A (x2- 9)(x - 3)2
B (x2- 9) (x - 3)2(x+3) C (x
2- 9)(x+3)
D (x - 3)2(x+3)
B Tự luận : ( 4 điểm) Cho phân thức M = 3 x2+3 x
(x +1)(2 x −6)
a) Tìm điều kiện của x để giá trị cuả phân thức M đợc xác định
b)Rút gọn M
Đáp án
A Mỗi ý đúng đợc 1 điểm
1 D 2 B 3 C 4 D 5 C 6 D
B a x -1, x 3 (2 điểm)
b M = 3 x
2 x −6 (2 điểm)
kiểm tra 15 phút (Chơng 2).
Môn: Đại Số (Đề số 4) Chọn đáp án đúng.
x2+ x + 1=
.
x3 - 1
là:
A 1 – 2x B x – 1 C - 2x2 + 3x - 1 D - x4 + x3 + 2x – 1
x3 - 1;
1 - 2x
x2 + x + 1 ; - 5 Mẫu thức chung đơn giản nhất của
chúng là:
A x2 + x + 1 B x3 – 1 C (x3 – 1)( x2 + x + 1) D (-5) (x3 – 1) ( x2 + x + 1)
9x4 - 9 là:
A 7(x - 1)
9 ¿ ¿ B 7
9 ¿ ¿ C 7(x - 1)
9(x + 1)(x2+ 1) D
7
9(x2+ 1)
Câu4: Giỏ trị của biểu thức x2 2x 12 tại x 2là:
Trang 9Câu 5: Giá trị của phân thức 2 x − 1
4 x2− 1 xác định với điều kiện:
A x1
2 ; B x−
1
2 ; C x
; x
; D.với mọi x
kiểm tra 15 phút (Chơng 2).
Môn: Đại Số (Đề số 5) Chọn đáp án đúng
1 Mẫu thức chung có bậc nhỏ nhất của ba phân thức : 2 x
x2−9 ;
x −1
¿ ¿ là
A (x2- 9)(x - 3)2
B (x2- 9) (x - 3)2(x+3) C (x
2- 9)(x+3)
D (x - 3)2(x+3)
2 Kết quả rút gọn phân thức x2− xy
5 xy − 5 y2 là:
A x2
5 y2+5 B −
1
5 C
x
5 y D
−2 x
5 y
3 Cặp phân thức nào sau đây không bằng nhau:
A 20 xy
28 x và
5 y
7
B −1
2 và
15 x
−30 x
C 7
28 x và
5 y
20 xy
D − 1
15 x và
−2
−30 x
4 Điều kiện xác định của phân thức x+1
(x − 2)( y+3) là:
A x 2 B x 2 , y -3 C y -3 D x 2 , y 3
5 Điều kiện xác định của phân thứcx2−2 x
x2−1 là:
A x 1 B x -1 C x 1, x -1 D x 0
6.Phân thức đối của phân thức 3 x
− x − 1 là:
A −3 x
x +1 B
3 x
x −1 C
3 x 1− x D
3 x
x+1
7 Đa thức M trong đẳng thức x2−2
M
2 x +2 bằng:
Trang 10A 25,8 B
N C
D 34,2
16
A 2x2- 2 B 2x2- 4 C 2x2+ 2 D 2x2+ 4
8 Kết quả rút gọn phân thức x2−2 x+1
x2− 1 là:
A 1 B -1 C 2x D x −1
x +1
Đáp án: mỗi câu đúng đợc 1,25 điểm.
1 D 2 C 3 D 4 B 5 C
6 D 7 B 8 D
kiểm tra 15 phút ( Chơng 1).
Môn: Hình học
( đề 1)
Khoanh tròn chỉ một chữ cái in hoa đứng trớc câu trả lời đúng trừ câu 3:
Câu 1:
Đờng thẳng là hình
A không có tâm đối
xứng
B có một tâm đối xứng
C có hai tâm đối xứng
D có vô số tâm đối xứng
Câu 2:
Cho hình vẽ Độ dài của MN là:
A 30.
B 60.
C 25,8.
D 34,2.
Câu 3:
Hình vuông là hình
A không có trục đối xứng
B có hai trục đối xứng
C có bốn trục đối xứng
D có vô số trục đối xứng
Câu 4: Điền các kí hiệu thích hợp vào chỗ trống ( ) trong lời giải của bài toán sau:
Cho hình thang vuông ABCD ( ^A=^ D= 900)
Gọi K là điểm đối xứng với B qua AD và KCD = 300
Gọi E là giao điểm của KC và AD Tính số đo AEB (hình 1).
Giải:
Vì điểm K đối xứng với điểm B qua AD nên
AD và AK AB
KAE = BAE (c.g.c) ABE AKE
Vì AKE = ECD = 30 0 (so le trong)
ABE = ==> AEB = 60
K A B
? E 300
D C
Trang 11kiểm tra 15 phút ( Chơng 1).
Môn: Hình học
( đề 2)
A- Trắc nghiệm 4,5 điểm Chọn đáp án đúng.
1.Đờng chéo hình vuông có tính chất
A Bằng nhau
B Vuông góc với nhau
C Cắt nhau tại trung điểm mỗi đờng
D Hai đờng chéo là các đờng phân giác của các góc của hình vuông
E Cả bốn tính chất trên
2 Hình chữ nhật là hình có
A Một trục đối xứng
B Hai trục đối xứng C Ba trục đối xứng.D Không có trục đối xứng
3 Hình vuông có độ dài cạnh là 2cm, độ dài đờng chéo hình vuông đó là
A 8cm B 4cm C √8cm D 6cm
B Tự luận (5,5điểm) Cho tam giác ABC cân tại A, đờng cao AH Gọi M là trung
điểm của AC, D là điểm đối xứng với H qua M
Chứng minh tứ giác ADCH là hình chữ nhật
kiểm tra 15 phút ( Chơng 1).
Môn: Hình học
( đề 3)
A- Trác nghiệm;(4điểm) Điền dấu"x" vào ô thích hợp.
a)Hình bình hành có một góc vuông là hình chữ nhật
b)Hình thoi là một hình thang cân
c)Hình vuông vừa là hình thang cân vừa là hình thoi
d)Hình bình hành có hai đờng chéo vuông góc là hình
thoi
B- Tự luận :(6điểm) Cho tam giác ABC cân tại A, đờng cao AH Gọi M là trung
điểm của AC, D là điểm đối xứng với H qua M
b) Chứng minh tứ gác ADHB là hình bình hành
kiểm tra 15 phút ( Chơng 1).
Môn: Hình học
( đề 4)
Khoanh tròn chỉ một chữ cái in hoa đứng trớc câu trả lời đúng trừ câu 3:
Câu 1:
Đờng thẳng là hình Câu 2:Cho hình vẽ Độ dài của MN là: Câu 3:
Hình vuông là hình
Trang 12A không có tâm đối
xứng
B có một tâm đối xứng
C có hai tâm đối xứng
D có vô số tâm đối xứng
A 30.
B 60.
C 25,8.
D 34,2.
A không có trục đối xứng
B có hai trục đối xứng
C có bốn trục đối xứng
D có vô số trục đối xứng
Câu 4: Điền các kí hiệu thích hợp vào chỗ trống ( ) trong lời giải của bài toán sau:
Cho hình thang vuông ABCD ( ^A=^ D= 900)
Gọi K là điểm đối xứng với B qua AD và KCD = 300
Gọi E là giao điểm của KC và AD Tính số đo AEB (hình 1).
Giải:
Vì điểm K đối xứng với điểm B qua AD nên
AD và AK AB
KAE = BAE (c.g.c) ABE AKE
Vì AKE = ECD = 30 0 (so le trong)
ABE = ==> AEB = 60
kiểm tra 15 phút ( Chơng 1).
Môn: Hình học
( đề 5)
Phần I Trắc ngiệm khách quan(4điểm).
Chọn đáp án đúng.(mỗi ý 1,5điểm)
1 Trong các hình sau, hình nào không có trục đối xứng
A Hình thang cân
B Hình bình hành C Hình chữ nhật.D Hình thoi
2 Đờng chéo hình thoi có tính chất
A Vuông góc với nhau
B Cắt nhau tại trung điểm mỗi đờng
C Hai đờng chéo là các đờng phân giác của các góc của hình thoi
D Cả ba tính chất trên
3 Hình chữ nhật có chiều dài là 3cm, chiều rộng là 2cm, độ dài đờng chéo hình chữ nhật đó là
A 5cm B 6cm C √13cm D 1,5cm
Phần II Tự luận(6điểm).
K A B ?
E 300
D C
Trang 13Cho h×nh b×nh hµnh ABCD cã AB = 2BC Gäi M vµ N lÇn lît lµ trung ®iÓm cña AB
vµ CD
Chøng minh c¸c tø gi¸c AMND, BMNC lµ c¸c h×nh thoi