I .Phöông tieän daïy hoïc: I I.Tiến trình tổ chức bài học: Kieåm tra baøi cuõ: Nêu định nghĩa các giá trị lượng giác của góc .. Nêu các hệ thức lượng giác cơ bản.[r]
Trang 1§84-85:Công Thức Lượng Giác
I.Mục tiêu:
Nắm vững ba loại công thức lượng giác: công thức cộng, công thức nhân đôi vàcông thức biểu diễn theo t =
2
a tg
Biết áp dụng các công thức này vào bài tập.
II.Phương tiện dạy học:
III.Tiến trình tổ chức bài học:
Kiểm tra bài cũ:
Nêu định nghĩa các giá trị lượng giác của góc .
Nêu các hệ thức lượng giác cơ bản.
Tính tg 5 , sin , cos
6
3
4
Nội dung bài học:
Hoạt động của học sinh Hoạt động của giáo viên
Học sinh chứng minh các công thức hệ quả
Tính cos150, sin1350, tg5
12
I.Công thức cộng:
1.Định lý: Với mỗi số a, b ta có công thức:
cos(a – b) = cosa.cosb + sina.sinb C.m:
Gọi sđAAM= a, sđAAN= b và M N A 0 =
Ta có: OM = OM.ON.cos
ON
= cos (1)
Mặt khác: OM = (cosa, sina), = (cosb, sinb)
ON
OM = cosa.cosb + sina.sinb (2)
ON
Từ (1), (2) cos = cosa.cosb + sina.sinb
Xét MN A , ta có: sđA MN= + k2, kZ Mà sđMN A = sđAAN – sđAAM+ m2, mZ
= b – a + m2
+ k2 = b – a + m2
= b – a + h2 với h = m – k
Vậy cos = cos(b – a) = cos(a – b)
2.Hệ quả: Từ định lý trên ta suy ra các công thức sau:
cos(a + b) = cosa.cosb – sina.sinb
sin(a + b) = sina.cosb + sinb.cosa
sin(a – b) = sina.cosb – sinb.cosa
tg(a + b) =
tga tgb tga tgb
tg(a – b) =
tga tgb tga tgb
3.Aùp dumg:
Ví dụ1: cmr: sinx + cosx = 2 sin( )
4
x
x
y
0
A
M N
H
K E
Lop10.com
Trang 2Học sinh chứng minh các công thức nhân đôi và
công thức hạ bậc
Học sinh chứng minh các công thức tính theo t =
2
a
tg
Biết tg = , tính giá trị của biểu thức:
2
2
A = 3 1
4 cos 3
sinx
x
Ví dụ2: rút gọn: A =
II.Công thức nhân đôi:
1.Công thức nhân đôi:
cos2a = cos2a – sin2a = 2cos2a – 1 = 1 – 2sin2a
sin2a = 2sina.cosa
tg2a = 2 2
1
tga
tg a
2.Công thức hạ bậc:
cos2a = 1 2
2
cos a
sin2a =1 2
2
cos a
3.Aùp dụng:
Ví dụ1: biết sina + cosa = 1; Tính sin2a
2
Ví dụ2: tính cos và sin
8
8
III.Công thức tính sina, cosa, tga theo t = :
2
a tg
Giả sử a ≠ + k2 Đặt t = , ta có các công thức:
2
a tg
sina = 2 2
1
t t
cosa =
2 2
1 1
t t
tga = 2 2
1
t t
Ví dụ: dùng công thức tga = 2 2 , tính tg
1
t t
Đặt t = tg , ta có t ≠ 1
12
tg =
6
2
2 1
t t
1 =
2 1
t t
t2 2 3 t 1 0
t = - 3- 2 (loại) t = - 3 + 2 (nhận) Vậy tg = - + 2
12
3
Cũng cố:
Bài tập về nhà:học sinh làm từ bài 1 đến bài 8 trang 199,200 Sgk
Lop10.com