1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Đề thi chọn học sinh giỏi tỉnh Hà Tĩnh năm học 2008-2009 môn Toán lớp 10 bảng A

1 15 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 87,19 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Tính diện tích OAB theo k và tìm k để diện tích đó đạt giá trị nhỏ nhất.[r]

Trang 1

Sở GD-ĐT Hà Tĩnh

Kỳ thi chọn học sinh giỏi tỉnh

Năm học 2008-2009

Môn Toán lớp 10  Bảng A

(Thời gian: 180 phút - Không kể thời gian giao nhận đề)

Bài 1 a Giải phương trình:

1

11 1

16

x x

1

) 1 ( 2 1

) (

2 1

2

2 3

y

x y

y

y x x x

Bài 2 Trên mặt phẳng với hệ toạ độ Oxy, cho Parabol (P): y x2 và đường thẳng (d)

đi qua điểm I(0, 1), có hệ số góc k Gọi giao điểm của (P) với (d) là A, B Giả

sử A, B có hoành độ lần lượt là , x1 x2

a Chứng minh rằng: x13 x23 2

b Tính diện tích OAB theo k và tìm k để diện tích đó đạt giá trị nhỏ nhất

Bài 3 Tam giác ABC là tam giác gì, nếu các góc A, B, C của nó thoả mãn hệ thức:

A C

C B

B A

C B

A

cot cot

1 cot

cot

1 cot

cot

1 sin

sin sin

 Bài 4 Cho tứ giác ABCD nội tiếp đường tròn tâm O Tìm điểm M thuộc đường tròn

(O) sao cho đại lượng P = 2 2 2 2 đạt giá trị lớn nhất? nhỏ

3MD MC

MB

nhất?

Bài 5 Tìm điều kiện của các hệ số a, b, c để phương trình sau vô nghiệm:

x c c bx ax b c bx ax

a( 2   )2 ( 2   ) 

-Hết -Lop10.com

Ngày đăng: 03/04/2021, 10:03

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w