Củng cố: Các em cần nắm vững phương pháp thế, phương pháp cộng trừ đại số để giải được hệ pt bậc nhất hai ẩn, ba ẩn và phải biết sử dụng máy tính bỏ túi để tìm ra nghiệm của những hệ pt [r]
Trang 111, 12
Bài 3: PHƯƠNG TRÌNH VÀ HỆ Ngày 01/11/2007 PHƯƠNG TRÌNH BẬC NHẤT NHIỀU ẨN Ngày
I- Mục đích yêu cầu:
Về kiến thức:
Về kĩ năng:
–
–
–
Về tư duy và thái độ:
– Tính $+ ) chính xác
–
II- Chuẩn bị:
GV: +
hai
+ Máy tính Casio fx 500MS
+
HS:
xem cách N @ máy tính (; túi
Phân phối thời gian:
+
+
+
III- Phương pháp:
nhóm
IV- Các bước lên lớp :
1
2
1/ Nêu cách
Áp
F m: m2 x + 6 = 4x + 3m
2/ Nêu
Áp
Các em
và 05 B cho " pt ()$ * ba + qua
bài sau:
G$ sinh lên ( A bài
Lý 7/=
Bài )' 7/=
1/ Pt (m2 – 4)x = 3m – 6 +
x =
3
m + 2
+
2/ Pt 9x2 – 12x + 4 = 4x2 + 12x + 9
5x2 – 24x – 5 = 0 x= 5; x=-1
5
5
Trang 2/6 $%& /6 $%& trò
cách
GV nêu pt ()$
* hai + ax + by = c
và
A0l 1' $%& a và b
thì
nào?
Chú ý:
a) Khi a = b = 0 ta có
pt: 0x + 0y = c
c 0: pt vô
c = 0:
(x0; y0)
b) Khi b 0, pt ax +
by = c AI thành
(2)
Dn' F (x0; y0) là
6$ / (2)
Cho
$%& " pt ()$
* hai + m
Có
pt (3) ?
Cho G$ sinh nêu
#6 F ví @ 2M " pt
có (3) và trình
bày cách
GV J J01 cho hai
G$ sinh lên ( trình
bày hai cách
nhau
0K o G$ sinh
N @ máy tính /
+
+ h*# F 1 (có $ r
Unknown)
+ )' các " F và
(*# * “=” ra Y
G$ sinh J) và nêu /% các A0l 1'
là (a = 0; b 0) ; (a 0;
b =0) ; (a = 0; b = 0) ; (a 0; b 0)
Trong 1' G$ sinh $ nêu
O /8 nêu /E [&
(; A0l 1' (a = 0;
b = 0) thì pt ()$ *
hai + có x quát là (1)
G$ sinh cho #6 F
ví @ 2M pt có (1)
0 3x + 2y = 1 0x + 5y = –3;
y $%& " pt ()$
(3)
Có hai cách là N
@ ' 05 pháp
Hai G$ sinh lên ( trình bày
hai cách khác nhau
Sử dụng phương pháp cộng đại số:
Nhân hai 2 pt (2) cho
3 /01$ 10x = 24
x = 12
5 x = 12 vào (2) ta
5 /01$ 2.12 + y = 5
5 y = 5 – 2.12 =
5
19 5
I- Ôn tập về pt và hệ hai pt bậc nhất hai ẩn
1 Pt bậc nhất hai ẩn
Pt bậc nhất hai ẩn x, y có dạng
tổng quát là ax + by = c (1) Trong đó a, b, c là các hệ số, với điều kiện a và b không đồng thời bằng 0.
Tổng quát, người ta chứng minh được rằng pt bậc nhất hai ẩn luôn luôn có vô số nghiệm Biểu diễn hình học tập nghiệm của pt (1) là
một đt trong mp toạ độ Oxy.
VD1: Pt 2x + y = 4 có các
(0; 4); (2; 0);
2 Hệ hai pt bậc nhất hai ẩn
Hệ hai pt bậc nhất hai ẩn có
dạng tổng quát là 1 1 1 (3)
Trong đó x, y là 2 ẩn; các chữ còn lại là hệ số.
Nếu cặp số (x 0 ; y 0 ) đồng thời là nghiệm của cả hai pt của hệ thì (x 0 ; y 0 ) được gọi là nghiệm của hệ pt
(3) Giải hệ pt (3) là tìm tập nghiệm
của nó.
4x – 3(5 – 2x) = 9 10x = 24 x = 12
5 x = 12 vào (*) ta /01$
5
y = 5 – 2.12 =
5
19 5
5
19 5
II Hệ ba pt bậc nhất ba ẩn
Pt ()$ * ba + có x quát là ax + by + cz = d
Trang 3/6 $%& /6 $%& trò
HĐ 2: G$ sinh làm
quen và }# 2r
cách
* ba + ,
" pt ()$ * ba
+ m
Có J~ G$ sinh không
" pt b) cách (*#
máy nào?
* # " pt
/< thì ta $
$ 2 cho /<
và (*# máy,
không ~ o / sai
0K o G$ sinh
cách
' 05 pháp n$
7 0l 1' $ 2)
D% $F thêm cho
G$ sinh (4 cách
1
2
Cho G$ sinh (*#
máy tìm
l pp hay $6
y $%& " pt ()$
(4)
a x b y c z d
h*# máy:
+
+ h*# F 1 (có $ r Unknown)
+ )' các " F và (*# * “=” ra Y.,
G$ sinh cho #6 F
ví @ 2M " pt (4) và (*# máy, sau /8 nêu cách
D6 hai 2 $%& pt (1)
và (2) ta /01$ #6 pt hai + x và y 0 3x + 2y = 1 D tìm #6 pt hai + x và y r& /
2 $%& pt (2) và (3) ta /01$ 5y = –5 0 2)
ta có " pt 3x 2y 1
" này quá quen
G$ sinh (*# máy tìm
là 7 5; ; 1 và lên
$@ ,
Trong /8 x, y, z là ba + j a, b, c, d
là các " F và a, b, c không /u
Hệ ba pt bậc nhất ba ẩn có dạng
tổng quát là
a x b y c z d
Trong đó x, y, z là ba ẩn; các chữ còn lại là các hệ số.
Mỗi bộ ba số (x 0 ; y 0 ; z 0 ) nghiệm đúng cả ba pt của hệ được gọi là một
nghiệm của hệ pt (4).
VD3:(17; 3 3; ) là
4 4 2
3
2
" pt dạng tam giác.
VD4:
2x y z 5 (1)
D6 (1) và (2) ta /01$ 3x + 2y = 1 D6 (2) và (3) ta /01$ 5y = –5
Ta có " pt: 3x 2y 1 (4)
(5) y = –1 vào (4) ta /01$ 3x + 2(–1) = 1 x = 1
x = 1; y = –1 vào (1) ta /01$ 2.1 + 1 + z = 5 z = 2
4 D% $F:
Các em
5 yn dò:
Làm bài )' trang 68, 69
Trang 4Ngày 7/11/2007 PHƯƠNG TRÌNH BẬC NHẤT NHIỀU ẨN Ngày
I- Mục đích yêu cầu:
Về kiến thức:
+ ba + ,
Về kĩ năng:
–
– Thành
– Thành
Về tư duy và thái độ:
– Tính $+ ) chính xác
–
II- Chuẩn bị:
GV: + Máy tính Casio fx 500MS.
+
HS: Làm các bài )' 2M nhà trang 68, 69 và xem 0K o cách N @
máy tính (; túi
III- Phương pháp:
IV- Các bước lên lớp :
1
2
Nêu
+ m
Có hai
0l xét hai " pt là hai + ba + ,
G$ sinh lên ( A bài
Lý 7/=
Bài )' 7/=
4x – 3(5 – 2x) = 9 10x = 24 x = 12
5 x = 12 vào (*) ta /01$
5
y = 5 – 2.12 =
5
19 5
5
19 5
3
/6 $%& /6 $%& trò
Cho
A0l 1' nào?
vì " trên 05 /05 1/ Cho " pt: 7x 5y 9
Trang 5/6 $%& /6 $%& trò
Ta * 2 trái $%&
nhau nên " vô n0
Cho G$ sinh
Cho
cách
' 05 pháp nào?
G$ sinh có làm
theo hai cách: $6 AO
$ J0 ý G$ sinh 3
sai khi $ 2
không
2
#6 2, F * là khi
vào pt xem nó có
không, n$ (*# máy
tính
0K o G$ sinh
N @ máy tính /
+
+ h*# F 1 (có $ r
Unknown)
+ )' các " F và
(*# * “=” ra Y
Cho G$ sinh
J) phân tích /M toán
và tìm ra
0K o G$ sinh
1 Y quýt và 1 Y
cam O /8 cho G$
sinh
" pt này F * là
(*# máy vì F JK ,
Cho G$ sinh
gK' chia thành 4 nhóm
bày
b) Nhân 2 2 pt (2) cho
2 /01$ 11x = 9
x = 9
11 (2) ta /01$
3 9 – 2y = 2 11
y = 7
11
;
11 11
c) Nhân pt (1) cho 6 và
nhân pt (2) cho 12 ta
có " 4x 3y 4
0 câu a và b
d) Nhân 2 2 $%& (1) cho 2 và 2) @ pp
3/
cam (x > 0; y> 0).Ta có " 10x 7y 17800
x = 800; y = 1400
4/
F áo 5 mi dây
$ M ? * , ? 2
2/
a) 2x 3y 1 (1)
x 2y 3 (2)
Nhân pt (2) cho 2 (1) ta /01$ 7y = 5 y = 5
7 y = vào (2) ta /01$5
7
x + 2.5 = 3 x=
7
11 7
7
5 7
b) 3x 4y 5
11 11
c)
d) 0,3x 0,2y 0,5
0,5x 0,4y 1,2
3/ Hai ( Vân và Lan / $N& hàng mua trái cây h Vân mua 10 Y quýt, 7
/u , h Lan mua 12 Y quýt, 6
bao nhiêu?
Giá
4/ Có hai dây $ M may áo 5 mi Ngày ? * $ hai dây $ M may /01$ 930 áo Ngày ? hai do dây $ M ? * *
Trang 6G$ sinh có #
Jo pt ? hai là
0,18x + 0,15y = 1083
là F âm
Cho
cách
* ba + ,
Cho G$ sinh
Nêu cách N @
máy tính (; túi / tìm
ra
trên
Bấm máy:
+
+ h*# F 1 (có $ r
Unknown)
+ )' các " F và
(*# * “=” ra
Y.,
Cho G$ sinh suy
[ và 0K o
G$ sinh phân tích
cách
" pt ()$ * ba + ,
y và z là F 05 ,
trên (4 cách (*#
máy và nêu Y
không
pp $@ ,
Cho
N @ máy tính (;
túi
* hai + ,
may /01$ trong ngày
? * (x và y nguyên
05 =, Ta có " pt:
1,18x 1,15y 1083
x = 450; y = 480
Hs J) nhanh
và lên ( trình bày
theo cách O (3) rút ra
z = 6 – 3x – y vào 2 pt / / /01$
" pt ()$ * hai + , 5x 3y 4
/01$ (x = 1; y = 1)
Sau /8 vào tìm z
b) O pt ? (3) rút ra
z = 3x + y – 5 vào 2 pt / ta /01$
cách
\ Y.J 11 5; ; -1
6/
/u = là giá bán #6 áo
5 mi, #6 Y âu và
#6 váy r (x, y, z > 0)
Ta có "
y = 125; z = 86
+ h*# F 1 (có $ r Unknown)
+ )' các " F và (*# * “=” ra Y.,
18%, dây $ M ? hai
* 15% nên $ hai dây $ M may
bao nhiêu áo 5 mi?
Trong ngày ? * thì dây $ M
? * may 450 và dây $ M ? hai may 480 áo 5 mi
5/
a)
Nhân (2) cho 2
và J* (2) AO (3) ta /01$
3x y 4
AO các 2 $%& " trên ta /01$
4x = 4 x = 1 y = 1 ; z = 2
b)
11 5; ; -1
6/ P6 $N& hàng bán áo 5 mi, Y
âu nam và váy r, Ngày ? *
bán /01$ 12 áo, 21 Y và 18 váy, doanh thu là 5 349 000 /u , Ngày
? hai bán /01$ 16 áo, 24 Y và
12 váy, doanh thu là 5 600 000 /u , Ngày ? ba bán /01$ 24 áo, 15 Y và 12 váy, doanh thu là
5 259 000
7/
(; túi (làm tròn Y / $ r F
)' phân ? hai)
a) 3x 5y 6
Trang 7/6 $%& /6 $%& trò
GV
quy tròn #6 F,
G$ sinh có #
phân F,
b)
c)
–0,39)
d)
(–4,00 ; 1,57 ; 1,71)
b) 2x 3y 5
c)
d)
4 Củng cố:
Các em
5 Dặn dò:
Làm bài )' ôn $ 05 III trang 70, 71, 72