1. Trang chủ
  2. » Giáo Dục - Đào Tạo

ĐỀ MẪU ÔN TẬP GIỮA KỲ 2 MÔN TOÁN KHỐI 12 NH 2020-2021.

4 12 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 422,39 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Diện tích phần hình phẳng gạch chéo trong hình vẽ bên được tính theo công thức nào dưới đâyA. Gọi V là thể tích của khối.[r]

Trang 1

TRƯỜNG THPT HIỆP BÌNH

TỔ TOÁN

-

ĐỀ ÔN TẬP KIỂM TRA GIỮA HỌC KỲ 2

MÔN TOÁN – KHỐI 12 – NĂM HỌC 2020 – 2021

THỜI GIAN: 45 PHÚT – ĐỀ 2

Câu 1 Tìm nguyên hàm của hàm số   1

5 2

f x

x

A d 5ln 5 2

5 2

x

5 2 5

x

5 2

x

5 2 2

x

Câu 2 Hàm số F x( )ex2 là một nguyên hàm của hàm số nào trong các hàm số nào sau đây

A f x( ) 2 xex2 B f x( )e2 x C

2 ( ) 2

x

e

f x

x

 D f x( )x e2 x2 1

Câu 3 Cho F x  là một nguyên hàm của hàm số f x e( ) x2x thỏa mãn  0  3

2

F Tìm F x 

A  2  21

2

x

2

x

2

x

2

x

Câu 4 Khẳng định nào sau đây đúng (với a0,a1 )

A sin xdxcosx C B  e2 xdx e 2 xC C a dx a2 x  2 x.lna C D

ln

a Câu 5 Tính I   x sin xdx, đặt u x  , dv  sin xdx Khi đó I biến đổi thành

A I   x cos x   cos xdx B I   x cos x   cos xdx

C I  x cos x   cos xdx D I  x cos x   cos xdx

Trang 2

Câu 6 Cho Tính

Câu 7 Cho 6 

0

f x dx Tính 2

0

(3 )

Câu 8 Biết F x   là một nguyên hàm của   1

1

f x

x

 và F   2 1  Tính F   3

A F   3  ln 2 1  B F   3  ln 2 1  C  3 1

2

4

Câu 9 Với t = x, tích phân

4 x 1

e dx

 bằng tích phân nào sau đây?

A

4

1

t

e dt

2

1

t e dt t C

2

1

2

1

t e dt t

Câu 10 Cho

1

2 0

d

ln 2 ln 3 2

x x

a b c

 với a, b , c là các số hữu tỷ Giá trị của 3a b c  bằng

Câu 11

2

3 1

1

e d

 x x bằng

A 1 5 2

e e

e e

3  C e5 e2 D 1 5 2

e e

3 

Câu 12 Cho tích phân

1

2 0

( 1)e dx

I  x x, Đặt u x 2x1

dv e dx

 

 ta được:

A

1 1

0 0

( 1).e

1 1

0 0 2( 1).e x 2 x

I  x  e dx

C

1 1

0 0 ( 1).e x x

1 1

0 0

( 1).e

I  x  e dx

Câu 13 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y x 3 và đồ thị hàm số x y x x2

A 37

9

81

 

2

0

f x x

0

2sin d

   7

2

I  

3

Trang 3

Câu 14 Cho hình phẳng D giới hạn bởi đường cong y 2 cos , x trục hoành và các đường thẳng

0, 

2

x x Khối tròn xoay tạo thành khi D quay quanh trục hoành có thể tích V bằng bao nhiêu?

A V    ( 1) B V   1 C V   1 D V    ( 1)

Câu 15 Diện tích phần hình phẳng gạch chéo trong hình vẽ bên được tính theo công thức nào dưới đây?

1

2 2 4 d

 

1

2 2 d

 

1

2 2 d

1

2 2 4 d

  

Câu 16 Cho hình phẳng (H) giới hạn bởi các đường y x 23, y0, x0,x Gọi V là thể tích của khối 2 tròn xoay được tạo thành khi quay (H) xung quanh trục Ox Mệnh đề nào dưới đây đúng?

A 2 2 2

0

3

V  x  dx B 2 2 

0

3

V  x  dx C 2 2 2

0

3

0

3

V  x  dx Câu 17: Trong không gian Oxyz, cho các vectơ  1;0;3

a và   2; 2;5

b Tích vô hướng   . 

a a b bằng

Câu 18: Trong không gian Oxyz, cho hai điểm A1;1; 1  và B2;3;2 Véctơ 

AB có tọa độ là

A 1;2;3 B  1; 2;3 C 3;5;1 D 3; 4;1

Câu 19: Trong không gian Oxyz, cho hai điểm I1;1;1 và A1; 2;3 Phương trình của mặt cầu có tâm I và đi qua điểm A là

A   2  2 2

     

     

C   2  2 2

     

     

Câu 20 Trong không gian với hệ tọa độ Oxyz , cho hai mặt phẳng  P mx: 4y8z 1 0 và mặt phẳng

 Q x ny:  4z 3 0 Nếu    P / / Q thì giá trị của ,m n là

A m  và 2 n 2 B m và 2 n  2 C 1

2

2

n  D m và 1 n  4

x

y

O

2 2 1

y x  x

2 3

y  x

2 1

Trang 4

Câu 21 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng   :x y z   6 0 Điểm nào dưới đây không thuộc   ?

A Q3; 3; 0 B N2; 2; 2 C P1; 2; 3 D M1; 1;1 

Câu 22 Trong không gian với hệ trục tọa độ Oxyz, gọi  là góc giữa hai mặt phẳng  P : 2x y 10 0 và

 Q x: 2z 3 0 Tính cos 

A cos   2

25 B cos   25 C cos  225 D cos  25

Câu 22 Trong không gian với hệ toạ độ Oxyz, cho A 1;0;0 , B 0;2;0 , C 0;0;3 Khi đó phương trình mặt phẳng ABC là:

1 2 3

2 1 3

1 3 2

3 2 1

x    y z

Câu 24 Trong không gian Oxyz, mặt phẳng  P đi qua ba điểm A 2; 1;8, B3;2; 5 , C  2;1;0 Có một vectơ pháp tuyến là:

A n  1;30;7 B n  1;15; 1  C n   1; 15;1 D n    2;30;2

Câu 25 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng  P qua điểm A 0; 2;3 và chứa trục Ox

A  P : 3y 2z 0 B  P : 2x   3y 5 0 C  P : 2  y 3z 0 D  P : 2y  3z 5 0

- Hết -

Ngày đăng: 03/04/2021, 02:40

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w