1. Trang chủ
  2. » Luận Văn - Báo Cáo

Giáo án Hình học khối 10 tiết 9: Bài tập

2 9 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 101,18 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

HS nhắc lại các kiến thức đã học HÑ 4: Cuûng coá : + Nêu đẳng thức tương ñöông cho bieát M laø trung ñieåm cuûa AB + Nêu đẳng thức tương ñöông cho bieát G laø troïng taâm cuûa  ABC + Đi[r]

Trang 1

GV : Bùi Văn Tín – Trường THPT số 3 Phù Cát H ình 10 -– Nâng cao

Ngày soạn : 22 /10 / 07

I MỤC TIÊU:

+) Kiến thức :+) Củng cố phép nhân một vectơ với một số và điều kiện để hai vectơ cùng phương

+) Biểu thị một vectơ qua hai vectơ không cùng phương ,ĐK để hai vectơ cùng phương , ĐK ba

điểm thẳng hàng

+) Điều kiện cần và đủ để hai tam giác có cùng trọng tâm

+) Kĩ năng : +) Biết cách chứng minh ba điểm thẳng hàng

+) Biết biểu thị một vectơ qua hai vectơ không cùng phương cho trước

+) Nhận biết hai tam giác cho trước có cùng trọng tâm không

+) Thái độ : Rèn luyện tư duy linh hoạt , tư duy logic , tính cẩn thận Biết quy lạ về quen

II CHUẨN BỊ:

GV: SGK, phấn màu , bảng phụ

HS: SGK, học bài và làm BT cho về nhà , dụng cụ học tập

III TIẾN TRÌNH TIẾT DẠY:

a Oån định tổ chức:

b Kiểm tra bài cũ(5’)

Gọi M, N là trung điểm của AB và CD Chứng minh 2MNAC BD=AD BC

c Bài mới:

10’ HĐ1: GV cho HS làm BT 21

trg 23 SGK

GV vẽ hình :

D'

a

a

M A'

B' B

A

O

H: Nêu cách dựng các vectơ

đã cho ?

HS đọc đề BT 21 +) Dựng điểm M sao cho tứ giác OAMB là hình vuông Khi đó OA OB OM  

OA OBBA

| OA OB | | OA  OB | AB a 2 +) Dựng các biểm A’, B’, D’ sao cho

và tứ giác OA’D’B’ là

OA '3OA, OB' 4OB

hình bình hành Khi đó 3OA 4OB OD' 

HS tính AD’ = 5a

HS làm tương tự cho các câu còn lại

Bài 21:

OAOBOM

  

OAOBBA

  

| OA OB | | OA OB |

   

3OA4OBOD '

5a

  

trg 24 SGK

GV vẽ hình

N

G

B

A

Tương tự HS làm bài 28 trg

9 SBT (BTVN)

HS đọc đề BT 25

ABGB GA  b a

    

GC 2GN  GA GB   (a b)

BCBGGC      b a b 2b a

CABA BC  a b 2b a 2ab

Bài 25:

ABGB GA   b a

GC    (a b)

  

BC  2b a

  

CA2ab

17’ HĐ 3: GV cho HS làm Bt 28

trg 24 SGK

GV vẽ hình

G A

Q

P

N G M

C

B A

D

Lấy một điểm O nào đó , ta có :

GA GB GC GD OA OG OB OG +OC

- OG + OD - OG OA OB OC OD 4OG

        

       

Do đó GA GB GC GD 0      

4

    

Nếu có G’ sao cho G 'A G 'B G 'C G 'D 0      

Bài 28:

Với O bất kì , ta có

GA GB GC GD

OA OG OB OG +OC

- OG + OD - OG

OA OB OC OD 4OG

   

    

  

    

Lop10.com

Trang 2

GV : Bùi Văn Tín – Trường THPT số 3 Phù Cát H ình 10 -– Nâng cao

Với O bất kì , theo quy tắc ba

điểm hãy chen điểm O vào

các vectơ trên ?

 (*)

Từ (*) hãy chứng tỏ G là

duy nhất ?

+) Nêu phương pháp chứng

minh G là trung điểm của

MP ?

(GM GP0)

Nêu phương pháp chứng

minh G thuộc AGA

GV tổng kết lại kết quả của

bài và nhấn mạnh cho HS

lưu ý : Đây là tính chất của

trọng tâm tứ giác

Nếu có G’ sao cho

G 'A   G 'B G 'C G 'D0

4

     

G’ trùng với G

Vậy G xác định duy nhất b) Gọi M, P lần lượt là trung điểm của AD và BC , ta có

GA GD2GM, GB GC   2GP

GA   GB GC GD0

 2 GM GP0  GM GP0 Vậy G là trung điểm của MP

Tương tự chứng minh G là trung điểm của NQ

Ta chứng minh ba điểm A, G, GA thẳng hàng

HS dựa vào tính chất trọng tâm của tứ giác , trọng tâm của tam giác suy ra GA 3GGA và do đó suy ra ĐPCM

Do đó

GAGB GC GD0

    

Vậy

1

4

    

G xác định duy nhất

b) Gọi M, P lần lượt là trung điểm của AD và BC , ta có :

GAGB GC GD0

    

 2 GM GP0

 GM GP0 Vậy G là trung điểm của MN Tương tự cho các trường hợp còn lại

c) Gọi GA là trọng tâm của BCD 

Ta chứng minh GA thuộc đoạn

AGA +) G là trọng tâm tứ giác ABCD nên GA   GB GC GD0 (1) +) GA là trọng tâm của BCD 

nên GB GC   GD3GGA (2) Từ (1) và (2) ta được GA 3GGA Vậy G thuộc đoạn AGA

+) Nêu đẳng thức tương

đương cho biết M là trung

điểm của AB

+) Nêu đẳng thức tương

đương cho biết G là trọng

tâm của ABC

+) Điều kiện để hai tam

giác ABC và A’B’C’ có

cùng trọng tâm

+) Điều kiện để ba điểm A,

B, C thẳng hàng

HS nhắc lại các kiến thức đã học 1) M là trung điểm của AB

 MA MB0 2) G là trọng tâm của 

ABC

 GA  BGGC0 3) Hai tam giác ABC và A’B’C’ có cùng trọng tâm

 AA ' BB' CC '    0 4) Ba điểm A,B, C thẳng hàng

k :

  ABkAC

d) Hướng dẫn về nhà (1’)

+) Ôn tập kiến thức về nhân một vectơ với một số

+) Xem lại các dạng BT đã giải

+) Làm bài 27 trg 24 SGK, bài 3640 trg 11 SBT

+) Xem trước bài 5 “ Trục toạ độ và hệ trục toạ độ ”

IV RÚT KINH NGHIỆM :

Lop10.com

Ngày đăng: 02/04/2021, 02:27

🧩 Sản phẩm bạn có thể quan tâm