Trong một đường tròn, góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung thì bằng nhauB. y mC[r]
Trang 1Nhắc lại kiến thức:
.O
A B
n
Trang 21 BAC = s® BnC
BAC là góc nội tiếp (O)
C
x
.
O
A
BAx có phải
là góc nội tiếp nữa hay không?
Nhắc lại kiến thức:
Trang 3Số đo của góc BAx có quan
hệ gì với số đo của cung AmB
?
O
x
A B
m
Trang 5x
A
B
m
y
n
Góc tạo bởi tiếp tuyến
và dây
<=
Góc: ?
Đỉnh nằm trên đường tròn Một cạnh là tia tiếp tuyến Một cạnh chứa dây cung
<
Góc BAx là góc tạo bởi tia tiếp tuyến và dây cung
Cung nhỏ AmB là cung bị chắn
1 Khái niệm:
(Góc BAy có cung bị chắn là cung lớn AnB)
Trang 6?1 Hãy giải thích vì sao các góc ở các hình 23, 24, 25, 26 không phải là góc tạo bởi tia tiếp tuyến và dây cung ?
Hình 25 Hình 24
Không có
cạnh là tia
tiếp tuyến
Không có cạnh chứa dây cung
Không có cạnh là tia tiếp tuyến
Đỉnh của góc không thuộc đường tròn
Trang 7O
B
O B
O
m m
m
C
2 Định lí:
Số đo của góc tạo bởi tia tiếp tuyến và dây cung bằng nửa số đo của cung bị chắn
Trang 8B
A x
m
Sđ BAx 30 0
Sđ AmB
x
O
A
B
m
Sđ BAx
Sđ AmB
A
O
B
x
120 0
m
n
Sđ BAx
Sđ AmB
Cho các hình vẽ sau, tính số đo cung AmB trong các trường hợp :
Bài tập:
Trang 9B
A x
m
Sđ BAx 30 0
Sđ AmB 60 0
x
O
A
B
m
Sđ BAx
Sđ AmB
180 0
A
O
B
x
m n
Sđ BAx
Sđ AmB 240 0
Qua bài tập trên có nhận xét gì về số
đo của góc tạo bởi tia tiếp tuyến và dây cung với số đo của cung bị chắn
Trang 10Cho hình vẽ, hãy so sánh số đo của BAx, ACB với số đo của cung AmB.
? 3
BAx= ½ sđ AmB (đ/l về góc tạo bởi tiếp tuyến
và dây cung) ACB= ½ sđ AmB (đ/l về góc nội tiếp) Suy ra BAx= ACB= ½ sđ AmB
Qua kết quả của ?3 ta rút ra kết luận gì về số đo của
góc tạo bởi tia tiếp tuyến và dây cung với số đo góc
nội tiếp cùng chắn một cung?
3 HỆ QUẢ:
Trong một đường tròn, góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung thì bằng nhau.
x
O
A
B
C
Đáp án
Trang 11Bài 27/SGK: Cho đường tròn tâm O , đường kính AB Lấy điểm P
khác A và B trên đường tròn Gọi T là giao điểm của AP và tiếp tuyến tại B của đường tròn Chứng minh: APO = PBT
Chứng minh:
Ta có: PAO = PBT (cùng bằng sđ PB ) (1)
AOP cân tại O ( OA = OP = R )
Suy ra PAO = APO ( 2 )
Từ (1) và (2) ta có APO = PBT (đpcm )
O
T P
1 2
Trang 12O A
B
C
BT31/79/SGK
Cho đường trịn (O;R) và dây cung BC = R Hai tiếp tuyến của
đường trịn (O)tại B, C cắt nhau ở A Tính ABC, BAC
Giải :
BOC là tam giác đều BOC = 600
Ta có :
OA = OB = BC = R (gt)
Mà : sđBOC sđBC= (TC góc ở tâm)
BC = 600
sđABC = 12 sđBC ABC = 300
Lại có :
Ta có : BAC + BOC = 1800
(góc nhọn và góc tù có cạnh tương ứng vuông góc)
BAC = 1800 – 600 = 1200
E
Trang 13BT33/80/SGK
E
Cho A, B, C là ba điểm trên đường tròn At là tiếp tuyến của đường tròn tại A Đường thẳng song song với
At cắt AB tại M và cắt AC tại N Chứng minh AB.AM
= AC.AN
B
A
M
C
N
=
ANAB AMAC
AB.AM = AC.AN
ABC s
ANM
t
=
ACAB AMAN
AB.AM = AC.AN
ABN s
ACM
Trang 14BT33/80/SGK
E
Cho A, B, C là ba điểm trên đường trịn At là tiếp
tuyến của đường trịn tại A Đường thẳng song song với
At cắt AB tại M và cắt AC tại N Chứng minh AB.AM
= AC.AN
B
A
M
C
N t
ABC s
BAC chung
C = BAt (gĩc nội tiếp và gĩc giữa tia tiếp tuyến và
dây cung cùng chắn cung AB)
Ta có :
Vậy :
ANM (g-g)
Mà : AMN = BAt (slt, At // MN)
C = AMN
=
ANAB AMAC
AB.AM = AC.AN
Giải :
Trang 15BT34/80/SGK
E
Cho đường tròn (O) và điểm M nằm bên ngoài đường tròn đó Qua điểm M kẻ tiếp tuyến MT và cát tuyến MAB Chứng minh MT2 = MA.MB
B A
T
O
M
=
MBMT MAMT
MT2 = MA.MB
MTA s
MBT
Trang 16- Ghi nhớ định nghĩa, tính chất và hệ quả của góc tạo bởi một tia tiếp tuyến và một dây cung.
-Làm các bài tập: 27,28, 29, 34 trang SGK.
-Chuẩn bị bài sau.