1. Trang chủ
  2. » Cao đẳng - Đại học

Integration of solar PV systems into grid: Impact assessment and solutions - Trường Đại học Công nghiệp Thực phẩm Tp. Hồ Chí Minh

10 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 705,63 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

This tool is used for the Reflexe Project (smartgrid) in order to determine the impacts of PV integration into the PACA (Côte d’Azur) Area in France (Fig. 5) and to evaluate smart solu[r]

Trang 1

INTEGRATION OF SOLAR PV SYSTEMS INTO GRID: IMPACT

ASSESSMENT AND SOLUTIONS

Prof Tran Quoc Tuan

CEA-INES (French National Institute for Solar Energy) and INSTN (Paris Saclay University)

50 avenue du Lac Léman, 73377 Le Bourget-du-lac, France

e-mail: TranQTuan@yahoo.com

Abstract The integration of Renewable Energy Resources (RES) or PV systems into

grid, with the intermittent characteristics can have several impacts on the network operation such as stability, protection and challenges for managing… Theses impacts are more complicated for an islanded grid or weak grid To facilitate the integration of renewable energies into the grid, a concept of smart-grid is used The smart grid uses digital technology to improve reliability, flexibility, and efficiency (both economically and energetically) of the electric system This paper presents impacts provided by PV systems integration into grid: voltage variations, frequency variation, voltage unbalance… Several solutions in order to reduce these impacts, to maximize the ancillary services contributed by PV systems are proposed via different projects Intelligent control and energy management are developed in order to minimize operation cost and to maximize the RES penetration rate into grid

Index Terms—Smart grid, microgrid, simulation, impact, stability, forecasting, control,

energy management, protection

I INTRODUCTION

Solar photovoltaic is a sustainable energy source Worldwide growth of photovoltaics is extremely dynamic and varies strongly by country By the end of 2016, cumulative photovoltaic capacity increased by more than 75 gigawatt (GW) and reached

at least 303 GW, sufficient to supply 1.8 percent of the world's total electricity consumption [1] The forecast has shown that from year 2100 solar energy will produce about 50% of total energy in the world Table I shows the solar PV energy development

in 2016 in the world

Trang 2

TABLE I: Solar PV energy development in 2013

The connection of solar PV system to the grid, with intermittent characteristic, can raise several technical problems or can have significant impacts on power systems

such as:

 Varying the power production

 Changing the voltage profile

 Increasing the voltage unbalance between phases

 Increasing harmonics on the network

 The stability, the protection problem and the system management: with great

number of inverters connected to grid, the inertia of network is low, the short-circuit currents are small…

II SOLAR PV POWER FORECASTING AND MONITORING

The integration of variable PV systems into electrical grids is limited because of their intermittences, fast power variations, high dependence on meteorology and low

inertia The variability has to be characterized along a spatial and time dimension For

spatial dimension, PV generation covering a large spatial extent can have an hourly

temporal resolution, while individual PV panel plants will have highly variable PV

power outputs in a short time When power systems are operating with variable PV

systems, the operators have different major issues in different time scales

Since the variability and uncertainty in PV generation create new challenges in the planning and operation of electric power grids, they should be properly accounted to

balance demand and supply Generally, electrical system operators and planners use

mechanisms including forecasting, scheduling, economic dispatch, and power reserves

Trang 3

to ensure power grid performances that satisfy reliability standards within an acceptable cost The forecasting of the power generation has been considered as a major solution to handle efficiently PV system integration into grids However, the uncertainty associated with forecast errors cannot be eliminated even with the best models and methods In addition, the combination of generation and consumption variability with forecast uncertainty makes the situation more difficult for power system operators to schedule and to set an appropriate power reserve level

Therefore, forecast information is essential for an efficient use, the management

of the electricity grid and for solar energy trading At CEA-INES, three models for forecasting the PV production have been developed based on stochastic learning method, local and remote sensing method and hybrid method (Fig 1):

 Solar PV forecasting model for 6 to 48 h: this model uses the weather forecasting

 Solar PV forecasting model for 30 min to 6 h: this model uses the satellites images

 Solar PV forecasting model for 5 to 30 min: this model uses the local camera

Fig 1: Three models developed at the CEA-INES for forecasting of PV production

Fig 2: Solar PV monitoring at a ski station “Le Pas du Lac”

Trang 4

Fig 3: Solar PV monitoring in France

Fig 2 shows a PV solar monitoring at a ski station “Le Pas du Lac” Solar PV monitoring stations in France is presented in Fig 3 From the information obtained by monitoring during one year (ex in 2013 for this case), we can estimate the variability of

PV production from power plan (central) to country in France as shown in Fig 4

Fig 4: Variability of PV production from power plan to country in France III IMPACT ASSESSMENT OF PV INTEGRATION INTO GRIDS

From random variables of PV production and loads, a probabilistic three phase Load Flow (PLF) is developed by using Monte Carlo techniques Two modes of simulation can be realized by using this tool:

 Deterministic simulation: all parameters are fixed

 Monte-Carlo simulation: set of simulations are performed, some parameters are defined as random variables such as loads, PV production…

Trang 5

In particularly, the neutral currents and losses in neutral conductors are also calculated The program shows also:

 Max or min values of these quantities and their occurrence

 Distribution of over-voltage, under-voltage or overcurrent

 Critical instants and locations (buses) in the network

 The developed tool based on the Monte Carlo simulation has the following advantages:

 A three-phase load flow program with a fast calculation

 A simulation which takes into account the unbalance between phases (single or three-phase loads)

 An ability to determine the voltage unbalance and losses in neutral conductors

 The identification of critical time, locations (buses) and occurrence probability of load or PV production

 An easy analysis of results with the help of proposed indicators

The proposed program allows an assessment of the impacts of PV integration on distribution and the determination of the penetration rate of PV systems After identifying the critical cases by using the developed tool, solutions can be developed and re-evaluated in particular to avoid the congestion, to maintain voltage within limits…

This tool is used for the Reflexe Project (smartgrid) in order to determine the impacts of PV integration into the PACA (Côte d’Azur) Area in France (Fig 5) and to evaluate smart solutions such as PV integration, energy storage and load shedding There are voltage violations in this area (PACA) when a 400 kV line is outraged between Realtor and Necules

Fig 5: PACA (Côte d’Azur) network in France

Trang 6

Fig 6: Voltage variation with N-1

Fig 7: Voltage variation with N-1 with solutions: PV+load shedding and PV+Storage

In order to maintain the continuation of operation, several solutions are carried out such as: PV installations, energy storage and load shedding Fig 7a shows the voltage variation with 180 MW of PV and load shedding about 234 MW Fig 7b shows the voltage variation with 180 MW of PV and 100 MW-200 MWh of energy storage With these solutions, voltages are maintained within limits

This tool is also used to determine the maximal PV insertion capacity connected

to grid (Fig 8) The maximal PV inversion capacity is determined by the constraints of voltages and power flows Fig 9 show the voltage variation and power variation without PV installations With a PV system installed at bus 53, the maximal capacity of

PV system is 6.85 MW For this case, they can have overloads on certain lines (Critical lines:10-47, 47-48, 48-49, 49-50, 50-51, 51-52) and no voltage variation (Fig 10a, and 10b) With PV systems installed at bus 53 and 61, the maximal capacity of PV system is 13.09 MW For this case, they can have voltage violation at buses: 52, 53, 54, 14, 15, 61 and no overloads (Fig 11a) With a PV system installed at bus 53, 36, 58, the maximal capacity of PV system is 14.67 MW (P_PV_36 = 6.51 MW, P_PV_53 = 1.31 MW,

0.94 0.96 0.98 1 1.02 1.04 1.06

Time (H)

0.94 0.96 0.98 1 1.02 1.04 1.06

Time (H)

0.94 0.96 0.98 1 1.02 1.04 1.06

Time (H)

Trang 7

P_PV_58 = 6.85 MW) There are overloads on lines 9-33, 33-34, 34-36, 12-55, 55-57, 57-58

Fig 8: Distribution network with PV installations

Fig 9: Voltage variation and power flow in lines

Fig 10a: Congestion; Fig 10b: no voltage violation (P_PVmax = 6.85 MW)

0.94 0.96 0.98 1 1.02 1.04 1.06

Time (H)

0 5 10 15 20 25 0

0.5 1 1.5 2 2.5 3

Time (H)

0 50 100 150 200

Time (H)

0.94 0.96 0.98 1 1.02 1.04 1.06

Time (H)

Trang 8

Fig 11a: Voltage violation (P_PVmax = 13.09 MW); Fig 10b: Over load (P_PVmax = 14.67)

IV CONTROL CAPABILITIES OF DISTRIBUTED ENERGY RESOURCE TO PARTICIPATE IN DISTRIBUTION SYSTEM OPERATION

This part presents a case study based on a real distribution network with a high share of distributed generation We built the simulation on the present network topology and generated a scenario for the expected future with a high penetration of DER (Distributed Energy Resources) and an increase of the consumption Even with a load growth exceeding the substations capacity the simulated network can be operated with a high security of supply This degree of power quality is guaranteed by controllable DER units which are capable of operating in an islanded mode and of providing voltage control and congestion management as ancillary services Simplified models of common DER units are described They allow a simulation of a thousand-node network

Fig 12: Distribution network in Valencia (Spain)

The connection of DER (Distributed Energy Resource), in particular PV systems

to networks can raise a certain number of technical challenges Important impacts are the influence on the network’s voltage, the network’s stability and the security of supply

0.94 0.96 0.98 1 1.02 1.04 1.06

Time (H)

0 50 100 150 200

Time (H)

Atomix Anillo Industrias

Norte UI-6 Sur Atomizados Euro Pueblos Ratils Arcillas Industrias Sur Onda Riegos Bechi Colomer Sur 9 Miralcamp Pedrizas Regios Onda

0.96 MW

Cristal Ceramica 702

CEE Gaya Fores 691

0.995 MW

0.96 MW

Hispania Ceramica 282

H fco gaya fores 2 644

0.854 MW

12.522 MW

Peronda 708

Atomix SA 712

4.5MW

Arcillas Atomizadas 704

0.960 MW

L-02 L-03 L-04 L-10 L-08 L-09 L-11 L-15 L-16 L-17 L-18 L-21 L-22 L-23 L-24

Azunlindus 706

L-55

HIJOS CIPR CASTELLO

Euroatomizado 624

9.981 MW

Atomizadora SA 705

0.627 MW

0.828 MW

0.855 MW

Cristal Ceramica 716

9.0MW

63kV network

8 MW

4 MW

1 MW

S_L03

521 522 523 525 526 527 528

10.8 MW 1.7 MVAR

9.1 MW 0.9 MVAR

Atomix Anillo Industrias

Norte UI-6 Sur Atomizados Euro Pueblos Ratils Arcillas Industrias Sur Onda Riegos Bechi Colomer Sur 9 Miralcamp Pedrizas Regios Onda

0.96 MW

Cristal Ceramica 702

CEE Gaya Fores 691

0.995 MW

0.96 MW

Hispania Ceramica 282

H fco gaya fores 2 644

0.854 MW

12.522 MW

Peronda 708

Atomix SA 712

4.5MW

Arcillas Atomizadas 704

0.960 MW

L-02 L-03 L-04 L-10 L-08 L-09 L-11 L-15 L-16 L-17 L-18 L-21 L-22 L-23 L-24

Azunlindus 706

L-55

HIJOS CIPR CASTELLO

Euroatomizado 624

9.981 MW

Atomizadora SA 705

0.627 MW

0.828 MW

0.855 MW

Cristal Ceramica 716

9.0MW

63kV network

8 MW

4 MW

1 MW

8 MW

4 MW

1 MW

S_L03

521 522 523 525 526 527 528

10.8 MW 1.7 MVAR

9.1 MW 0.9 MVAR

Synchronous generators Circuit breaker

Feeder

Atomix Anillo Industrias

Norte UI-6 Sur Atomizados Euro Pueblos Ratils Arcillas Industrias Sur Onda Riegos Bechi Colomer Sur 9 Miralcamp Pedrizas Regios Onda

0.96 MW

Cristal Ceramica 702

CEE Gaya Fores 691

0.995 MW

0.96 MW

Hispania Ceramica 282

H fco gaya fores 2 644

0.854 MW

12.522 MW

Peronda 708

Atomix SA 712

4.5MW

Arcillas Atomizadas 704

0.960 MW

L-02 L-03 L-04 L-10 L-08 L-09 L-11 L-15 L-16 L-17 L-18 L-21 L-22 L-23 L-24

Azunlindus 706

L-55

HIJOS CIPR CASTELLO

Euroatomizado 624

9.981 MW

Atomizadora SA 705

0.627 MW

0.828 MW

0.855 MW

Cristal Ceramica 716

9.0MW

63kV network

8 MW

4 MW

1 MW

S_L03

521 522 523 525 526 527 528

10.8 MW 1.7 MVAR

9.1 MW 0.9 MVAR

Atomix Anillo Industrias

Norte UI-6 Sur Atomizados Euro Pueblos Ratils Arcillas Industrias Sur Onda Riegos Bechi Colomer Sur 9 Miralcamp Pedrizas Regios Onda

0.96 MW

Cristal Ceramica 702

CEE Gaya Fores 691

0.995 MW

0.96 MW

Hispania Ceramica 282

H fco gaya fores 2 644

0.854 MW

12.522 MW

Peronda 708

Atomix SA 712

4.5MW

Arcillas Atomizadas 704

0.960 MW

L-02 L-03 L-04 L-10 L-08 L-09 L-11 L-15 L-16 L-17 L-18 L-21 L-22 L-23 L-24

Azunlindus 706

L-55

HIJOS CIPR CASTELLO

Euroatomizado 624

9.981 MW

Atomizadora SA 705

0.627 MW

0.828 MW

0.855 MW

Cristal Ceramica 716

9.0MW

63kV network

8 MW

4 MW

1 MW

8 MW

4 MW

1 MW

S_L03

521 522 523 525 526 527 528

10.8 MW 1.7 MVAR

9.1 MW 0.9 MVAR

Synchronous generators Circuit breaker

Feeder

Trang 9

In all cases, DER must take over the responsibilities from large conventional power plants aiming at substituting them considerably They have to provide flexibility and controllability necessary to support economic and secure system operation This represents a shift from traditional central control philosophy presently used to control typically hundreds of generators to a new distributed control paradigm applicable for operation of hundreds of thousands of controllable generators and loads

This case study is based on a real distribution network (Fig 12) A real network topology in Valencia (Spain) of 1540 nodes is used A scenario for the future (say year

2020 - 2030) is defined, it is based on an increase of consumption and distributed generation, in particular PV systems and wind powers

Fig 13: Active power exchange of transformer TF1 with HV network

Congestion management is one of the key issues for secure and reliable network operation If local generators cannot change their power outputs congestions occur as illustrated in Fig 13 in the time span between 17:00 and 22:00 Then, the loading reaches 29.2 MVA for transformer TF1 and 23.5 MVA for transformer TF2 Both transformers with a rated power of 20 MVA are overloaded

In order to avoid congestion, power outputs of CHP plants and BESS (Battery Energy Storage System) are re-dispatched as shown in Fig 13 By those changes, the power exchanges are reduced and power exchanges with HV power system are limited

in the admissible limits of the two transformers (20 MVA) In this case, the generation reserve is sufficient to contribute for congestion management In case the total power generation is not sufficient, a load shedding could be applied

In order to avoid congestion, new active power outputs of CHP plants and BESS, generation shift distribution factors method can be used

V INTELLIGENT VOLTAGE CONTROL

The connection of PV systems to the network can provide voltage variation of the network With P/Q classic control (reactive powers equal to zero) there are overvoltages

Trang 10

superior to 1.1 pu in case of strong irradiation and light load and undervoltages inferior

to 0.9 pu in case of heavy load and no sun PV systems can be disconnected in these cases by protections

1 Principe of Auto-Adaptive Voltage Control

The developed auto-adaptive voltage control answers partly to questions with not only technical but also economic advantages: local decisions based only on local measures This avoids investments on communication systems for DNOs

Fig 14 describes the working principle of auto-adaptive voltage control

Fig 14: Principe of auto-adaptive control

2 Simulations

a LV network

To study the voltage problem caused by photovoltaic systems in order to find innovative solutions, a LV distribution network presented in Fig 15 is studied The network consists of nine single-phase residential loads and a three-phase commercial load There are also 9 PV single phase systems of 1, 2 or 3 kW and three-phase system

of 75 kW

Fig 15: LV distributed network with PV systems

Pfixed

Q fixed

Classical

Q adapted

Adaptive module (fuzzy logic) P/Q control or P/V control ?

(V_desired varied adaptively)

+ +

Ré s ea u HTA 20 k V

PV- 2kW

PV- 2kW

PV- 3kW PV- 3kW

PV- 1kW PV- 1kW

PV3P- 75kW

PV- 1kW

30

30

1 R1

LF

LF1

Slack: 20 5kVRM SLL/ _0 Phase: 0

5nF

C1

30

30

30

30

30

R10

30

R11

30

R12

30

R13

30

R14

30

R15

30

R16

p1

ALM 70_130m

PI

p1

ALM 70_185m

PI

p1

ALM 70_1000m

PI

p1

ALM 70_346m

PI

p1

ALM 70_216

PI

p1

ALM 70_130m

PI

p1

ALM 70_251m

PI

p1

ALM 35_45m

PI

p1

ALM 35_57m

PI

p1

ALM 35_21m

PI

p1

ALM 35_30m

PI

p1

ALM 35_27m

PI

p1

AL95_50S_470m

PI

1 DY_1

20/ 0 42

+

S_HTA

20 5kVRM SLL / _0 Slack: LF1

p

V_pu V4

p

V_pu V5

p

V_pu V3

p

V_pu V14

p

V_pu V11

p

V_pu V2

p

V6

V_pu

p

V7 V_pu

p

V13

V12

V_pu

p

V10

V_pu

PV7c_3kW

PV11a_3kW

PV4b_2kW

PV14c_2kW

PV10b_3kW

PV6a_2kW

PV12a_1kW

PV13b_1kW

P

ic 50Hz

50Hz

p3

scope

Pt ot al

scope

Q t ot al

scope

Et ot al

I nt 1

La Lb Lc

L_Dyn

L_Dyn

L5c

L_Dyn

L6a

L_Dyn

L7c

L_Dyn

L_Dyn

L11a

L_Dyn

L14c

L_Dyn

L13b

L_Dyn

L12a

I n

N5_V2sV1

I n

N14_V2sV1

I n

N11_V2sV1

I n

N13_V2sV1

I n

N12_V2sV1

I n

N10_i2si1

I n

N4_V2sV1

PV3P3_75kW

I n

N3_V2sV1

I n

N6_V2sV1

I n

N7_V2sV1

I n

N2_V2sV1

M PLO T

PV5c_1kW

PV13 b

LV9

LV10

b LV8

LV4

b

c LV14

c

a LV11

LV12 a HTA

LV3

b c

LV6 a

LV7

c

Ngày đăng: 01/04/2021, 17:34

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w