Nếu độ dài đường cao tăng lên 2 lần, diện tíchđáy không đổi thì thể tích của khối nón sẽ tăng lên A.. Phân tích phương án nhiễu:Đáp án A: Học sinh sẽ có thể nhớ sai phương pháp tính nguy
Trang 1SỞ GIÁO DỤC VÀ ĐÀO TẠO
Thời gian làm bài: 50 phút, không kể thời gian phát đề
Câu 1. Từ một lớp có 14 học sinh nam và 16 học sinh nữ, có bao nhiêu cách chọn ra một học sinh ?
�
1
y x
�
7
y x
a
B 16 a 2. C 4 a 2. D
2163
a
Câu 10 Cho hàm số y f x có bảng biến thiên như sau
Hàm số y f x đồng biến trên khoảng nào dưới đây?
Trang 2Câu 12. Cho hình nón có độ dài đường cao h và bán kính r Nếu độ dài đường cao tăng lên 2 lần, diện tích
đáy không đổi thì thể tích của khối nón sẽ tăng lên
A 2 lần B
1
2 lần. C 4 lần. D 8 lần
Câu 13. Cho hàm số y ax 4bx2c a, � có đồ thị như hình vẽ0
Số điểm cực đại của hàm số là
Câu 14. Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A
21
x y
21
x y
2 11
x y
Trang 3Câu 19. Cho số phức z thỏa mãn z 2 3i Trong mặt phẳng tọa độ, số phức z được biểu diễn bởi điểm
nào sau đây ?
A M 2;3
B N2; 3 . C P2;3. D Q 2; 3.
Câu 20. Cho hai số phức z1 và 1 i z2 Phần ảo của số phức 3 2i 2z1 nằm trong khoảng nào z2
trong các khoảng sau đây ?
Câu 22. Trong không gian Oxyz, Đối xứng điểm A2;7;5
qua mặt phẳng Oxz
Câu 24. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P
song song với hai đường thẳng2
A nur12; 1; 5 . B nuur2 2;0;4 . C nuur3 1;5; 3 . D nuur4 1; 7;5.
Câu 25. Trong không gian Oxyz , điểm nào dưới đây không thuộc đường thẳng d :
1 2
2 32
Câu 26. Cho hình chóp S ABC có SA vuông góc với mặt phẳng ABC, SA a 3, tam giác ABC đều (minh
họa như hình bên) Góc giữa đường thẳng SC và mặt phẳng ABC
bằng 30 � Tính thể tích khối chóp
S ABC
Trang 4A
39
.4
a
B
327.4
a
C
3.4
a
D
381.4
2a x
b c
2 3
4a x
b c
2 3
2a c x
b
2 2
2a c x
b
Câu 30. Cho hàm số f x có bảng biến thiên như sau:
Số nghiệm thực của phương trình 3f x 10 0 là
Câu 32. Trong không gian, cho hình chữ nhật ABCD , AB2a và AD3a Khi quay hình chữ nhật
ABCD quanh cạnh AB thì đường gấp khúc BCDA tạo thành một hình trụ Diện tích xung quanh
Câu 34 Diện tích S của hình phẳng giới hạn bởi các đường y2sin ,x y3,x và 21 x được tính bởi
công thức nào dưới đây?
12sin 3
Trang 5S � x dx
Câu 35. Cho số phức z biết z i i(3 4) Phần ảo của số phức z2 bằng
A 24 B. 24i C 24 D 24i
Câu 36. Gọi z z là các nghiệm phức của phương trình 1, 2 2z2 2z 5 0 với phần ảo lần lượt dương và
âm Mô đun của số phức w 4 z12 z22 bằng
chứa đường thẳng d song song với trục Ox
A P x: 2z 2 0. B P x: 2y 1 0.
C P y z: 2 0
Câu 38. Trong không gian Oxyz, cho mặt cầu ( ) :S x2y2 z2 2x4y2z 5 0
; đường thẳng tiếp xúc với mặt cầu ( )S tại điểm A(0;5; 0); song song với mặt phẳng ( ) : 2P x y 2z 8 0 có
Câu 39. Bạn An có 5 quyển sách Toán, 3 quyển sách vật Lý và 2 quyển sách Hóa sắp xếp trên một giá sách
nằm ngang Tính xác suất sao cho 2 quyển sách Hóa luôn đứng cạnh nhau
Câu 40. Cho lăng trụ đứng ABC A B C có đáy là tam giác vuông tại A , ��� AB a , BC 2a Gọi M , N , P
lầ lượt là trung điểm của AC , CC , ��A B và H là hình chiếu của A lên BC Tính khoảng cách giữa MP và NH
A
34
a
38
a
32
f x mx mx m x
nghịch biến trên �
Câu 42. Áp suất không khí P (đo bằng milimet thủy ngân, kí hiệu là mmHg) suy giảm mũ so với độ cao
x (so với mực nước biển và đo bằng mét) theo công thức P P 0.exi, trong đóP0 760mmHg là áp suất ở mực nước biển, i là hệ số suy giảm Biết rằng ở độ cao 1000m thì áp suất của không khí là
672, 71mmHg Hỏi áp suất không khí ở độ cao 4125m là bao nhiêu (làm tròn đến hàng phần
trăm)?
Câu 43. Đường cong ở hình bên là đồ thị của hàm số
ax b y
cx d
với a b c d, , , là các số thực Mệnh đề nào
Trang 6A ab 0,ad 0.
B ab0,ad0
C bd 0,ad 0.
D ab0,ad0
Câu 44. Cho hình nón có chiều cao h20, bán kính đáy r25 Một thiết diện đi qua đỉnh của hình nón
cắt khối nón theo một hình tam giác cân có diện tích 500 (đvdt) Tính khoảng cách từ tâm của đáyđến mặt phẳng chứa thiết diện
60 4141
OH
C
100 4141
A
5
132
59
Câu 46. Cho hàm số f x( ) có bảng biến thiên như sau:
Số nghiệm phương trình f(cos )x 1 thuộc đoạn
9
;2
Câu 48. Cho hàm số ycos3x3sin2 x m Gọi S là tập hợp các giá trị m sao cho3
2 max y min y 9 Tổng các phần tử của tập hợp S bằng:
A
163
Câu 49. Cho khối tứ diện ABCD có thể tích V Gọi G , 1 G , 2 G , 3 G là trọng tâm của bốn mặt của tứ diện4
ABCD Thể tích khối tứ diện G G G G là:1 2 3 4
Trang 7Câu 50. Có bao nhiêu số nguyên y sao cho tồn tại số nguyên x10 thỏa mãn
Trang 8Ta có u4 u1 3d �3d u 4 u1 26 1 27.
2793
d
�
Phân tích phương án nhiễu:
Phương án nhiễu A, thực hiện sai phép tính: u4 u1 d �d u 4 u1 26 1 27.
Phương án nhiễu B, do nhầm cấp số nhân và áp dụng sai công thức
Ta có 3x22x 1�3x2 2x 30 � x22x0
02
x x
x x
�
� � � .
Phương án nhiễu C: Nhầm a x b�xa b
Trang 92 2
3x x 1� x22x31
13
x x
x x
ABCD A B C D���� có AB� 2 � cạnh hình lập phương bằng 1.
Thể tích khối lập phương cạnh a là V a3.
Vậy thể tích khối lập phương cạnh 1 là: V 13 1.
Phương án nhiễu A: Tính nhầm giữ nguyên cạnh bằng 2.
Phương án nhiễu B: Tính nhầm công thức thành 2
2
Phương án nhiễu D: Tính nhầm công thức 1.3
Câu 5. Tìm đạo hàm của hàm số ylog7x.
A
ln 7
y x
�
1
y x
�
7
y x
�
Lời giải Chọn D
Đạo hàm của hàm số ylog7x là: y� xln 71 .
* Phân tích phương án nhiễu:
+ Phương án A: nhầm công thức đạo hàm loga x lna
x
�
.+ Phương án B: nhầm công thức đạo hàm loga x 1
x
�
.+ Phương án C: nhầm công thức đạo hàm loga x a
Trang 10Phân tích phương án nhiễu:
Đáp án A: Học sinh sẽ có thể nhớ sai phương pháp tính nguyên hàm từng phần là:
�udv u v �udv
.Đáp án C: Học sinh sẽ có thể nhớ sai phương pháp tính nguyên hàm từng phần là �udv
uv�vdu
.Đáp án D: Học sinh sẽ có thể nhớ sai phương pháp tính nguyên hàm từng phần là �udv
Gọi cạnh hình vuông là x Ta có
1.3
3x a a
x a
� nên chọn đáp án A.
Phân tích phương án nhiễu:
Phương án B nhiễu vì sai công thức
2
12
B x
Phương án D nhiễu vì tính sai số
Câu 8. Cho khối nón có thể tích V4 và bán kính đáy r2 Tính chiều cao h của khối nón đã cho.
Lời giải Chọn A
Phương án nhiễu B: học sinh nhớ nhầm công thức tính thể tích khối trụ
Phương án nhiễu C: học sinh nhầm giữa bán kính và chiều cao
Phương án nhiễu D: học sinh nhầm công thức
Câu 9. Diện tích của mặt cầu đường kính 2a bằng
A
243
a
B 16 a 2. C 4 a 2. D
2163
a
Lời giải Chọn C
Ta có bán kính mặt cầu là R a
Diện tích mặt cầu S 4 R2 4 a2.
Phân tích sai lầm
Trang 11Câu 10 Cho hàm số y f x có bảng biến thiên như sau
Hàm số y f x đồng biến trên khoảng nào dưới đây?
A � ; 1. B � 1; . C 0;1 D 1;0 .
Lời giải
Chọn D
Dựa vào bảng biến thiên ta thấy hàm số đồng biến trên 1;0 .
Câu 11. Cho 0 � Giá trị của biểu thức a 1 Ploga a a.3
Ta có: Ploga a a.3
1 3
loga�a a �
4 3
Phương án nhiễu B nhầm công thức loga a a.3 3loga a
Phương án nhiễu D nhầm công thức
5
a a a
Câu 12. Cho hình nón có độ dài đường cao h và bán kính r Nếu độ dài đường cao tăng lên 2 lần, diện tích
đáy không đổi thì thể tích của khối nón sẽ tăng lên
A 2 lần B
1
2 lần. C 4 lần. D 8 lần
Lời giải Chọn A
Thể tích khối nón ban đầu:
Phương án nhiễu B: nếu giảm độ dài đường cao 2 lần mới chọn đáp án này.
Phương án nhiễu C nhầm với sự tăng bán kính nên ảnh hưởng kết quả tăng thể tích
Trang 12Phương án nhiễu D nhớ sai công thức thể tích hình trụ là có r3.
Câu 13. Cho hàm số y ax 4bx2c a, � có đồ thị như hình vẽ0
Số điểm cực đại của hàm số là
Lời giải Chọn B
Từ đồ thị, số điểm cực đại của hàm số là 2 với x1,x 1.
Phương án nhiễu A, học sinh nhầm x là điểm cực tiểu của hàm số.0
Phương án nhiều C, học sinh nhầm số điểm cực trị là 3
Câu 14. Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A
21
x y
21
x y
2 11
x y
x . D y x3 3x 2.
Lời giải Chọn A
Đường cong có dạng của đồ thị hàm số hữu tỉ bậc 1 trên bậc 1, đồ thị có các đường tiệm cận đứng1
x và tiệm cận ngang y1 nên chỉ có hàm số
21
x y
x thỏa yêu cầu bài toán.
Phương án nhiễu B, C học sinh không xác định được hai tiệm cận của đồ thị.
Phương án nhiễu D, học sinh nhầm dạng đồ thị hàm số hữu tỉ bậc 1 trên bậc 1.
Câu 15. Số đường tiệm cận đứng của đồ thị hàm số
1
x y x
Trang 13Suy ra x 1 là tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số có 1 đường tiệm cận đứng
Phân tích đáp án nhiễu.
- Đáp án A học sinh sai do nhầm hàm số không có tiệm cận như hàm số bậc ba, bậc 4 trùng phương
- Đáp án C học sinh sai do nhầm đếm cả tiệm cận ngang và tiệm cận đứng
- Đáp án D học sinh sai do chọn nhầm nghiệm của tử số
Câu 16. Tìm tập nghiệm của bất phương trình logx2 logx5 1
Xét đáp án D , học sinh khoanh nhầm do nhầm dấu của bất phương trình
Câu 17. Cho hàm số y f x có đồ thị trong hình vẽ bên Số nghiệm của phương trình 2 ( ) 1 0f x là
Số nghiệm của phương trình f x 12
bằng số giao điểm của đồ thị hàm số y f x và đường
thẳng
12
y( như hình vẽ)
Trang 14Dựa vào đồ thị ta thấy có 2 giao điểm.
Vậy phương trình có 2 nghiệm phân biệt
3
Câu 19. Cho số phức z thỏa mãn z 2 3i Trong mặt phẳng tọa độ, số phức z được biểu diễn bởi điểm
nào sau đây ?
A M 2;3
B N2; 3 . C P2;3. D Q 2; 3.
Lời giải Chọn B
Ta có z 2 3i�z 2 3i.
Vậy số phức z được biểu diễn bởi điểm N2; 3 .
Phương án nhiễu A là do học sinh tìm điểm biểu diễn của z thay vì z
Phương án nhiễu C và D là do học sinh tìm sai z
Câu 20. Cho hai số phức z1 và 1 i z2 Phần ảo của số phức 3 2i 2z1 nằm trong khoảng nào z2
trong các khoảng sau đây ?
A 3; 5 B 2; 0 . C 4; 2 . D 5; 7
Lời giải Chọn A
Ta có 2z1 z2 2(1 ) ( 3 2 ) i i 1 4 i
Vậy phần ảo của số phức 2z1 bằng z2 4 thuộc vào khoảng 3; 5
Phân tích phương án nhiễu
Phương án nhiễu B : Nhầm với phần thực là 1
Phương án nhiễu C : Tính nhầm ra kết quả bằng 3
Phương án nhiễu D : Tính nhầm ra kết quả bằng 6
Câu 21. Trên mặt phẳng tọa độ, điểm M2; 1 là điểm biểu diễn số phức nào dưới đây?
A z 2 i B z 2 i C z 1 2i D z 1 2i
Lời giải Chọn A
Điểm M2; 1 biểu diễn số phức z 2 i
Phân tích phương án nhiễu
Phương án nhiễu B : Nhầm phần ảo là 1.
Phương án nhiễu C : Nhầm giữa phần thực và phần ảo
Trang 15Phương án nhiễu D : Nhầm giữa phần thực và phần ảo.
Câu 22. Trong không gian Oxyz, Đối xứng điểm A2;7;5qua mặt phẳng Oxz
là điểm B có tọa độ là
A B2;7; 5 . B B 2; 7;5. C B2;7; 5 . D B2; 7; 5
Lời giải Chọn B
Ta có hình chiếu điểm A lên mặt phẳngOxz
là H( 2;0;5) .
Vì H là trung điểm của đoạn AB nên B3; 5; 2
Phân tích phương án nhiễu
Phương án nhiễu A : HS nhầm lẫn đối xứng qua mặt phẳng Oxz
là đổi dấu ;x z
Phương án nhiễu C : HS không nắm khái niệm
Phương án nhiễu D : HS không nắm khái niệm
Câu 23. Trong không gian Oxyz, cho mặt cầu S
d có vectơ chỉ phương uuurd 1; 2; 3 và có vectơ chỉ phương uuur 2;1;1
Khi ấy nr��uur uuru u d; ��1; 7;5
là một vectơ pháp tuyến của mặt phẳng P
* d đi qua A2; 1;1 và đi qua B 1; 2;0
Học sinh đã chọn nhầm 2 điểm A , B trên là chỉ phương của 2 đường thẳng nên đã tính tích có hướng bởi 2 tọa độ đó Vì vậy chọn sai phương án A
Học sinh lấy tọa độ điểm A và
uur
u để tính tích có hướng Vì vậy chọn sai phương án B
Học sinh chọn sai tọa độ uuurd 1; 2;3
nên tính tích có hướng nr ��u uuur uurd; �� 1;5; 3
Trang 16Thay tọa độ của điểm Q vào phương trình đường thẳng d ta có
224
Hệ vô nghiệm Vậy điểm Q không thuộc vào đường thẳng d
Phương án nhiễu B, học sinh nhầm không thay N vào d thử.
Phương án nhiễu C, học sinh nhầm không thay P vào d thử.
Phương án nhiễu D, học sinh nhầm VTCP.
Câu 26. Cho hình chóp S ABC có SA vuông góc với mặt phẳng ABC, SA a 3, tam giác ABC đều (minh
họa như hình bên) Góc giữa đường thẳng SC và mặt phẳng ABC
bằng 30 � Tính thể tích khối chóp
S ABC
A
39
.4
a
B.
327.4
a
C
3.4
a
D
381.4
Phương án nhiễu B, học sinh nhầm V SABC S ABC.SA
Phương án nhiễu C, học sinh nhầm
2 34
ABC
a
Phương án nhiễu D, học sinh nhầm V SABC 3S ABC.SA.
Câu 27. Cho hàm số f x có bảng xét dấu f x�
như sau:
Số điểm cực tiểu của hàm số đã cho là
Lời giải Chọn D
Trang 17Dựa vào bảng biến thiên, ta thấy f x�
đổi dấu từ âm sang dương khi qua nghiệm x , nên hàm 2
số đã cho có 1 điểm cực tiểu
*Phương án nhiễu A, học sinh nhận thấy được đổi dấu 3 lần khi qua các nghiệm
x x x nên suy ra hàm số có 3 điểm cực trị mà quên là đề bài hỏi số điểm cực tiểu
*Phương án nhiễu B, học sinh không nhớ được các định lí về điểm cực đại và điểm cực tiểu (điểm
cực trị) và nhìn thấy bảng xét dấu có 4 nghiệm nên chọn bừa là hàm số có 4 điểm cực trị, suy ra hàm số có 4 điểm cực tiểu.
*Phương án nhiễu C, học sinh nhìn vào bảng xét dấu có 2 dấu " " nên suy ra hàm số có 2 điểm cực tiểu.
Câu 28. Giá trị lớn nhất của hàm số y f x x48x216 trên đoạn 1;3 bằng:
Lời giải Chọn C
Vậy 1;3
maxy 25
Phương án A: học sinh chọn sai vì không so sánh các kết quả với nhau
Phương án B: học sinh chọn kết quả lớn nhất trong 4 đáp án.
Phương án D: học sinh chọn nhầm giá trị nhỏ nhất.
Câu 29. Cho các số thực x a b c d, , , , dương thoả mãn logx2 log 2 a 3logb4 log4c Biểu diễn x theo
, ,
a b c được kết quả là:
A
2 3
2a x
b c
2 3
4a x
b c
2 3
2a c x
b
2 2
2a c x
b
Lời giải Chọn B
Câu 30. Cho hàm số f x có bảng biến thiên như sau:
Trang 18Số nghiệm thực của phương trình 3f x 10 0 là
Lời giải Chọn B
Phương trình đã cho tương đương với f x 103
Ta thấy đường thẳng
103
x
cắt đồ thị tại 1 điểm + Phương án nhiễu C: HS chuyển dấu nhầm 3 10 0 10
3
f x � f x �
kết luận phương trình có 2 nghiệm.
+ Phương án nhiễu D: HS xác định nhầm nghiệm của đạo hàm.
Câu 31. Tập nghiệm của bất phương trình log32x2 log3x2 3 0 là
Điều kiện : x 0.
Khi đó: log23x2log3x2 3 0�log23x4 log3x 3 0
Đặt tlog x3
Bất phương trình đã cho trở thành: t2 4t 3 0�1 t 3�1 log x 3 3 �3 x 3 3 27
Kết hợp với điều kiện, nghiệm của bất phương trình là: S 3;27
Phân tích đáp án nhiễu:
Đáp án A: Học sinh không chú ý dấu dẫn đến lấy khoanh nhầm phương án
Đáp án B: Học sinh áp dụng sai định lý về dấu dẫn đến lấy nhầm tập nghiệm là khoảng
1.3
t t
�
�
�Đáp án D: Học sinh xét dấu sai và lấy sai tập nghiệm
Câu 32. Trong không gian, cho hình chữ nhật ABCD , AB2a và AD3a Khi quay hình chữ nhật
ABCD quanh cạnh AB thì đường gấp khúc BCDA tạo thành một hình trụ Diện tích xung quanh
của hình trụ đó bằng
Trang 19A 6 13 a 2 B 8 13 a 2 C 12 a 2. D 20 a .
Lời giải
Chọn C
Khi quay hình chữ nhật ABCD quanh cạnh AB thì đường gấp khúc BCDA tạo thành một hình
trụ có chiều cao h AB 2a, đáy là hình tròn bán kính r AD3a.
Khi đó diện tích xung quanh của là S xq 12a2.
Phương án nhiễu A: Học sinh lấy nhầm chiều cao của hình trụ là AC.
Phương án nhiễu B: Học sinh lấy nhầm bán bán kính đáy là AC.
Phương án nhiễu D: Học sinh lấy ẩu nên nhìn thiếu bình phương của a.
Câu 34 Diện tích S của hình phẳng giới hạn bởi các đường y2sin ,x y3,x1 và x2 được tính bởi
công thức nào dưới đây?
12sin 3
S � x dx
Lời giải Chọn B
Diện tích S của hình phẳng là: 2 2
Ta có z i i(3 4) 3 4i nên z 3 4i
2 (3 4 )2 7 24
z i i nên phần ảo của số phức z2 bằng 24
Phân tích phương án nhiễu: