1. Trang chủ
  2. » Cao đẳng - Đại học

Tổng hợp kiến thức môn Toán luyện thi ĐH - CĐ

20 15 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 316,16 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Xét dấu : Đa thức hay phân thức hữu tỷ, dấu A/B giống dấu A.B; bên phải cùng dấu hệ số bậc cao nhất; qua nghiệm đơn bội lẻ : đổi dấu; qua nghiệm kép bội chẵn : không đổi dấu... Số nghiệm[r]

Trang 1

Phạm Thuỳ Linh – 12A10- THPT KT(06 – 09)

I - GIẢI TÍCH TỔ HỢP

1 Giai thừa : n! = 1.2 n

0! = 1 n! /(n – k)! = (n – k + 1).(n – k + 2) n

2 Nguyên tắc cộng : Trường hợp 1 có m cách chọn, trường hợp 2 có n cách chọn; mỗi cách chọn đều thuộc đúng

một trường hợp Khi đó, tổng số cách chọn là : m + n

3 Nguyên tắc nhân : Hiện tượng 1 có m cách chọn, mỗi cách chọn này lại có n cách chọn hiện tượng 2 Khi đó,

tổng số cách chọn liên tiếp hai hiện tượng là : m x n

4 Hoán vị : Có n vật khác nhau, xếp vào n chỗ khác nhau Số cách xếp : Pn = n !

5 Tổ hợp : Có n vật khác nhau, chọn ra k vật Số cách chọn :

)!

k n ( k

! n

Ck

n  

6 Chỉnh hợp : Có n vật khác nhau Chọn ra k vật, xếp vào k chỗ khác nhau số cách :

n!

(n k)!

Chỉnh hợp = tổ hợp rồi hoán vị

7 Tam giác Pascal :

1

4 4

3 4

2 4

1 4

0 4

3 3

2 3

1 3

0 3

2 2

1 2

0 2

1 1

0 1

0 0

C C C C C

C C C C

C C C

C C C

Tính chất :

k 1 n

k n 1 k n

k n n

k n

n n

0 n

C C C

C C , 1 C C

8 Nhị thức Newton :

* ( a  b )n  C0nanb0 C1nan1b1  Cnna0bn

a = b = 1 : C0n C1n  Cnn  2n

Với a, b  {1, 2, }, ta chứng minh được nhiều đẳng thức chứa :

n n

1 n

0

n, C , , C C

* ( a  x )n  C0nan C1nan1x   Cnnxn

Ta chứng minh được nhiều đẳng thức chứa C0n, C1n, , Cnn bằng cách :

- Đạo hàm 1 lần, 2 lần, cho x = 1, 2, a = 1, 2,

- Nhân với xk , đạo hàm 1 lần, 2 lần, cho x = 1, 2, , a = 1, 2,

- Cho a = 1, 2, ,  2

0

1

0

hay hay

 Chú ý :

* (a + b)n : a, b chứa x Tìm số hạng độc lập với x : C a bk n k kn   Kxm

Giải pt : m = 0, ta được k

* (a + b)n : a, b chứa căn Tìm số hạng hữu tỷ

m r

n

C a b  Kc d

Giải hệ pt :

 Z q / r

Z p /

m

, tìm được k

* Giải pt , bpt chứa A , Ck

n

k

n : đặt điều kiện k, n  N* , k  n Cần biết đơn giản các giai thừa, qui đồng mẫu số, đặt thừa số chung

* Cần phân biệt : qui tắc cộng và qui tắc nhân; hoán vị (xếp, không bốc), tổ hợp (bốc, không xếp), chỉnh hợp (bốc rồi xếp)

* Áp dụng sơ đồ nhánh để chia trường hợp , tránh trùng lắp hoặc thiếu trường hợp

Trang 2

Phạm Thuỳ Linh – 12A10- THPT KT(06 – 09)

* Với bài toán tìm số cách chọn thỏa tính chất p mà khi chia trường hợp, ta thấy số cách chọn không thỏa tính chất p ít trường hợp hơn, ta làm như sau :

số cách chọn thỏa p

= số cách chọn tùy ý - số cách chọn không thỏa p

Cần viết mệnh đề phủ định p thật chính xác

* Vé số, số biên lai, bảng số xe : chữ số 0 có thể đứng đầu (tính từ trái sang phải)

* Dấu hiệu chia hết :

- Cho 2 : tận cùng là 0, 2, 4, 6, 8

- Cho 4 : tận cùng là 00 hay 2 chữ số cuối hợp thành số chia hết cho 4

- Cho 8 : tận cùng là 000 hay 3 chữ số cuối hợp thành số chia hết cho 8

- Cho 3 : tổng các chữ số chia hết cho 3

- Cho 9 : tổng các chữ số chia hết cho 9

- Cho 5 : tận cùng là 0 hay 5

- Cho 6 : chia hết cho 2 và 3

- Cho 25 : tận cùng là 00, 25, 50, 75

II- ĐẠI SỐ

1 Chuyển vế : a + b = c  a = c – b; ab = c 

 

 b / c a

0

b c 0 b

a/b = c 

 0 b

bc

a

; a n1 b  a  n1b

2n

a 0

 

0 a

a b b

a

b / c a

0

b c / b a

0

b 0 , c 0

b c

ab

; b c a c b

a

2 Giao nghiệm :

} , a min{

x b x

a x

; } , a max{

x b

x

a

x





p

;

Nhiều dấu v : vẽ trục để giao nghiệm

3 Công thức cần nhớ :

a : chỉ được bình phương nếu 2 vế không âm Làm mất phải đặt điều kiện

b a 0

0 b b a , b a

0 b b

a

b a

0

b 0 a

0 b b

a

) 0 b , a neáu ( b a

) 0 b , a neáu ( b a ab

Trang 3

Phạm Thuỳ Linh – 12A10- THPT KT(06 – 09)

b . : phá . bằng cách bình phương : a 2 a2 hay bằng định nghĩa :

) 0 a neáu ( a

) 0 a neáu ( a a

b a b a

; b a

0 b b

a     b b a b 

b 0

        

0 b a b

a   2 2 

c Mũ : y  ax, x  R , y  0 , y  neáu a  1 , y  neáu 0  a  1

a / a a ; (a ) a ; a / b (a/ b)

a b (ab) ; a a (m n,0 a 1) a = 1

) 1 a 0 neáu ( n m

) 1 a neáu ( n m a

a

d log : y = logax , x > 0 , 0 < a  1, y  R

y nếu a > 1, y nếu 0 < a < 1,  = logaa

loga(MN) = logaM + logaN ()

loga(M/N) = logaM – logaN ()

2 a a

a

2

aM 2 log M , 2 log M log M

logaM3 = 3logaM, logac = logab.logbc

logbc = logac/logab, loga M 1 logaM

loga(1/M) = – logaM, logaM = logaN  M = N

0 M N(neáua 1) log M log N

M N 0(neáu0 a 1)

Khi làm toán log, nếu miền xác định nới rộng : dùng điều kiện chặn lại, tránh dùng công thức làm thu hẹp miền xác định Mất log phải có điều kiện

4 Đổi biến :

a Đơn giản : t  ax  b  R , t  x2  0 , t  x  0 t,  x  0 t,  ax  0 t,  logax  R

b Hàm số : t = f(x) dùng BBT để tìm điều kiện của t Nếu x có thêm điều kiện, cho vào miền xác định của f.

c Lượng giác : t = sinx, cosx, tgx, cotgx Dùng phép chiếu lượng giác để tìm điều kiện của t

d Hàm số hợp : từng bước làm theo các cách trên

5 Xét dấu :

a Đa thức hay phân thức hữu tỷ, dấu A/B giống dấu A.B; bên phải cùng dấu hệ số bậc cao nhất; qua nghiệm đơn (bội lẻ) : đổi dấu; qua nghiệm kép (bội chẵn) : không đổi dấu

b Biểu thức f(x) vô tỷ : giải f(x) < 0 hay f(x) > 0

c Biểu thức f(x) vô tỷ mà cách b không làm được : xét tính liên tục và đơn điệu của f, nhẩm 1 nghiệm của pt f(x) =

0, phác họa đồ thị của f , suy ra dấu của f

6 So sánh nghiệm phương trình bậc 2 với  :

f(x) = ax2 + bx + c = 0 (a  0)

* S = x1 + x2 = – b/a ; P = x1x2 = c/a

Dùng S, P để tính các biểu thức đối xứng nghiệm Với đẳng thức g(x1,x2) = 0 không đối xứng, giải hệ pt :

2 1

2 1

x

x

P

x x

S

0

g

Biết S, P thỏa S2 – 4P  0, tìm x, x từ pt : X2 – SX + P = 0

Trang 4

Phạm Thuỳ Linh – 12A10- THPT KT(06 – 09)

* Dùng , S, P để so sánh nghiệm với 0 :

x1 < 0 < x2  P < 0, 0 < x1 < x2 

0 S

0 P 0

x1 < x2 < 0 

0 S

0 P 0

* Dùng , af(), S/2 để so sánh nghiệm với  : x1 <  < x2  af() < 0

 < x1 < x2 

2 / S

0 ) ( a

0

; x1 < x2 <  

2 / S

0 ) ( a 0

 < x1 <  < x2 

a.f( ) 0 a.f( ) 0

 

   

; x1 <  < x2 <  

 0 ) ( a

0 ) ( a

7 Phương trình bậc 3 :

a Viête : ax3 + bx2 + cx + d = 0

x1 + x2 + x3 = – b/a , x1x2 + x1x3 + x2x3 = c/a , x1.x2.x3 = – d/a

Biết x1 + x2 + x3 = A , x1x2 + x1x3 + x2x3 = B , x1.x2.x3 = C

thì x1, x2, x3 là 3 nghiệm phương trình : x3 – Ax2 + Bx – C = 0

b Số nghiệm phương trình bậc 3 :

 x =   f(x) = ax2 + bx + c = 0 (a  0) :

3 nghiệm phân biệt 

0 ) ( 0

2 nghiệm phân biệt 

0 ) (

0 0

) ( 0

 

 < 0hay    f = 0 = 0

 Phương trình bậc 3 không nhẩm được 1 nghiệm, m tách được sang 1 vế : dùng sự tương giao giữa (C) : y = f(x) và (d) : y = m

 Phương trình bậc 3 không nhẩm được 1 nghiệm, m không tách được sang 1 vế : dùng sự tương giao giữa (Cm) : y = f(x, m) và (Ox) : y = 0

3 nghiệm 

0 y y

0

CT CÑ

' y

2 nghiệm 

0 y y

0

CT CÑ

' y

1 nghiệm  y'  0 

0 y

y

0

CT CÑ

' y

c Phương trình bậc 3 có 3 nghiệm lập thành CSC :

0 y

0

uoán

' y

d So sánh nghiệm với  :

 x = xo  f(x) = ax2 + bx + c = 0 (a  0) : so sánh nghiệm phương trình bậc 2 f(x) với 

Trang 5

Phạm Thuỳ Linh – 12A10- THPT KT(06 – 09)

 Không nhẩm được 1 nghiệm, m tách được sang 1 vế : dùng sự tương giao của f(x) = y: (C) và y = m: (d) , đưa  vào BBT

 Không nhẩm được 1 nghiệm, m không tách được sang 1 vế : dùng sự tương giao của (Cm) : y = ax3 + bx2 +

cx + d (có m) ,(a > 0) và (Ox)

 < x1 < x2 < x3 

y'

CÑ CT

0

y( ) 0 x

 

 

  

x1 <  < x2 < x3 

CT

CT CÑ

' y

x

0 ) ( y

0 y y 0

x1 < x2 <  < x3 

CT CÑ

' y

x

0 ) ( y

0 y y 0

x1 < x2 < x3 <  

y'

CÑ CT

CT

0

y( ) 0 x

 

 

8 Phương trình bậc 2 có điều kiện :

f(x) = ax2 + bx + c = 0 (a  0), x  

2 nghiệm 

 0

0 ) (

, 1 nghiệm 

0 ) ( 0

0 ) ( 0

Vô nghiệm   < 0 

0 ) ( 0

Nếu a có tham số, xét thêm a = 0 với các trường hợp 1 nghiệm, VN

9 Phương trình bậc 4 :

a Trùng phương : ax4 + bx2 + c = 0 (a  0) 

 0 ) t (

0 x

t = x2  x =  t

4 nghiệm 

0 S

0 P

0

; 3 nghiệm 

 0 S

0 P

2 nghiệm 

0 2 / S 0

0 P

; 1 nghiệm 

0 2 / S 0

0 S

0 P

 x1 x2 x3

x1 x2

x3

x1 x2 x3

x1 x2 x3

Trang 6

Phạm Thuỳ Linh – 12A10- THPT KT(06 – 09)

VN   < 0 

0 S

0 P

0

  < 0  0

0

P S

 

 

4 nghiệm CSC 

1 2

2 1

t 3 t

t t 0

Giải hệ pt :

2 1

2 1

1 2

t.

t P

t t S

t 9 t

b ax4 + bx3 + cx2 + bx + a = 0 Đặt t = x +

x

1

Tìm đk của t bằng BBT : t  2

c ax4 + bx3 + cx2 – bx + a = 0 Đặt t = x –

x

1

Tìm đk của t bằng BBT : t  R

d (x + a)(x + b)(x + c)(x + d) = e với a + b = c + d Đặt : t = x2 + (a + b)x Tìm đk của t bằng BBT

e (x + a)4 + (x + b)4 = c Đặt :

2

b a x

t    , t  R

10 Hệ phương trình bậc 1 :

'c y ' b x ' a

c by

ax

Tính :

D =

' b

b '

a

a

, Dx =

' b

b 'c

c

, Dy =

'c

c ' a

a

D  0 : nghiệm duy nhất x = Dx/D , y = Dy/D

D = 0, Dx  0  Dy  0 : VN

D = Dx = Dy = 0 : VSN hay VN (giải hệ với m đã biết)

11 Hệ phương trình đối xứng loại 1 :

Từng phương trình đối xứng theo x, y Đạt S = x + y, P = xy

ĐK : S2 – 4P  0 Tìm S, P Kiểm tra đk S2 – 4P  0;

Thế S, P vào pt : X2 – SX + P = 0, giải ra 2 nghiệm là x và y

(, ) là nghiệm thì (, ) cũng là nghiệm; nghiệm duy nhất

  =   m = ?

Thay m vào hệ, giải xem có duy nhất nghiệm không

12 Hệ phương trình đối xứng loại 2 :

Phương trình này đối xứng với phương trình kia Trừ 2 phương trình, dùng các hằng đẳng thức đưa về phương trình tích A.B = 0

Nghiệm duy nhất làm như hệ đối xứng loại 1

13 Hệ phương trình đẳng cấp :

' d y 'c xy ' b x ' a

d cy bxy

ax

2 2

2 2

Xét y = 0 Xét y  0 : đặt x = ty, chia 2 phương trình để khử t Còn 1 phương trình theo y, giải ra y, suy ra t, suy

ra x Có thể xét x = 0, xét x  0, đặt y = tx

14 Bất phương trình, bất đẳng thức :

* Ngoài các bất phương trình bậc 1, bậc 2, dạng cơ bản của , , log, mũ có thể giải trực tiếp, các dạng khác cần lập bảng xét dấu Với bất phương trình dạng tích AB < 0, xét dấu A, B rồi AB

* Nhân bất phương trình với số dương : không đổi chiều

số âm : có đổi chiều Chia bất phương trình : tương tự

* Chỉ được nhân 2 bất pt vế theo vế , nếu 2 vế không âm

* Bất đẳng thức Côsi :

a, b  0 : ab

2

b

a  

Dấu = xảy ra chỉ khi a = b

Trang 7

Phạm Thuỳ Linh – 12A10- THPT KT(06 – 09)

a, b, c  0 : 3 abc

3

c b

a   

Dấu = xảy ra chỉ khi a = b = c

* Bất đẳng thức Bunhiacốpxki : a, b, c, d

(ac + bd)2  (a2 + b2).(c2 + d2); Dấu = xảy ra chỉ khi a/b = c/d

15 Bài toán tìm m để phương trình có k nghiệm :

Nếu tách được m, dùng sự tương giao của (C) : y = f(x) và (d) : y = m Số nghiệm bằng số điểm chung

Nếu có điều kiện của x  I, lập BBT của f với x  I

16 Bài toán tìm m để bất pt vô nghiệm, luôn luôn nghiệm, có nghiệm x  I :

Nếu tách được m, dùng đồ thị, lập BBT với x  I

f(x)  m : (C) dưới (d) (hay cắt)

f(x)  m : (C) trên (d) (hay cắt)

III- LƯỢNG GIÁC

1 Đường tròn lượng giác :

Trên đường tròn lượng giác, góc  đồng nhất với cung AM, đồng nhất với điểm M

Ngược lại, 1 điểm trên đường tròn lượng giác ứng với vô số các số thực x + k2

Trên đường tròn lượng giác, nắm vững các góc đặc biệt : bội của

6

(

3

1

cung phần

tư) và

4

(

2

1

cung phần tư)

x =  +

n

k

2 

:  là 1 góc đại diện, n : số điểm cách đều trên đường tròn lượng giác

2 Hàm số lượng giác :

3 Cung liên kết :

* Đổi dấu, không đổi hàm : đối, bù, hiệu  (ưu tiên không đổi dấu : sin bù, cos đối, tg cotg hiệu )

* Đổi hàm, không đổi dấu : phụ

* Đổi dấu, đổi hàm : hiệu

2

(sin lớn = cos nhỏ : không đổi dấu)

4 Công thức :

a Cơ bản : đổi hàm, không đổi góc

b Cộng : đổi góc a  b, ra a, b

c Nhân đôi : đổi góc 2a ra a

d Nhân ba : đổi góc 3a ra a

e Hạ bậc : đổi bậc 2 ra bậc 1 Công thức đổi bậc 3 ra bậc 1 suy từ công thức nhân ba

f Đưa về

2

a tg

t  : đưa lượng giác về đại số

g Tổng thành tích : đổi tổng thành tích và đổi góc a, b thành (a  b) / 2

h Tích thành tổng : đổi tích thành tổng và đổi góc a, b thành a  b

5 Phương trình cơ bản : sin = 0 cos = – 1 hay cos = 1  = k,

sin = 1   =

2

+ k2; sin = –1   = –

2

+ k2,

cos = 0  sin = –1 hay sin = 1   =

2

+ k, cos = 1   = k2, cos = – 1   =  + k2

sinu = sinv  u = v + k2  u =  – v + k2

cosu = cosv  u =  v + k2

tgu = tgv  u = v + k

cotgu = cotgv  u = v + k

6 Phương trình bậc 1 theo sin và cos : asinu + bcosu = c

* Điều kiện có nghiệm : a2 + b2  c2

* Chia 2 vế cho a 2 b2 , dùng công thức cộng đưa về phương trình cơ bản

2

+

2

0

2

 

0 A x+k2 

M

cos chiếu 

sin

chiếu xuyên tâm tg

M

Trang 8

Phạm Thuỳ Linh – 12A10- THPT KT(06 – 09)

(cách khác : đưa về phương trình bậc 2 theo

2

u tg

7 Phương trình đối xứng theo sin, cos :

Đưa các nhóm đối xứng về sin + cos và sin.cos

Đặt : t = sinu + cosu =

2

t 1

2 sin u , 2 t 2,sin u.cosu

8 Phương trình chứa sinu + cosu và sinu.cosu :

Đặt :

t

tsinu cos u   sin u   ,   t ,sinu.cos u  

9 Phương trình chứa sinu – cosu và sinu.cosu :

2

1 t

t sin u cosu 2 sin u , 2 t 2,sin u.cosu

10 Phương trình chứa sinu – cosu và sinu.cosu :

Đặt :

2

1

t

tsinu cos u   sin u   ,   t ,sinu.cos u  

11 Phương trình toàn phương (bậc 2 và bậc 0 theo sinu và cosu) :

Xét cosu = 0; xét cosu  0, chia 2 vế cho cos2u, dùng công thức

1/cos2u = 1 + tg2u, đưa về phương trình bậc 2 theo t = tgu

12 Phương trình toàn phương mở rộng :

* Bậc 3 và bậc 1 theo sinu và cosu : chia 2 vế cho cos3u

* Bậc 1 và bậc – 1 : chia 2 vế cho cosu

13 Giải phương trình bằng cách đổi biến :

Nếu không đưa được phương trình về dạng tích, thử đặt :

* t = cosx : nếu phương trình không đổi khi thay x bởi – x

* t = sinx : nếu phương trình không đổi khi thay x bởi  – x

* t = tgx : nếu phương trình không đổi khi thay x bởi  + x

* t = cos2x : nếu cả 3 cách trên đều đúng

* t = tg

2

x

: nếu cả 3 cách trên đều không đúng

14 Phương trình đặc biệt :

*

0 v

0 u 0

v

u2 2

*

C v

C u C

v

C

u

v

u

*

B v

A u B

A v

u

B

v

A

u

* sinu.cosv = 1 

1 v cos

1 u

sin 1

v cos

1 u sin

* sinu.cosv = – 1 

1 v cos

1 u sin 1

v cos

1 u sin

Tương tự cho : sinu.sinv =  1, cosu.cosv =  1

15 Hệ phương trình : Với F(x) là sin, cos, tg, cotg

a Dạng 1 :

) 2 ( n

y x

) 1 ( m ) y ( F ) x (

F

Dùng công thức đổi + thành nhân,

thế (2) vào (1) đưa về hệ phương trình :

 b y x

a y x

Trang 9

Phạm Thuỳ Linh – 12A10- THPT KT(06 – 09)

b Dạng 2 :

 n y x

m ) y ( F ).

x (

F

Tương tự dạng 1, dùng công thức đổi nhân thành +

c Dạng 3 :

 n y x

m ) y ( F / ) x (

F

Dùng tỉ lệ thức :

d b

c

a d b

c

a d

c b

a

 biến đổi phương trình (1) rồi dùng công thức đổi + thành x

d Dạng khác : tìm cách phối hợp 2 phương trình, đưa về các pt cơ bản

16 Toán  :

* Luôn có sẵn 1 pt theo A, B, C : A + B + C = 

* A + B bù với C, (A + B)/2 phụ với C/2

* A, B, C  (0, ) ; A/2, B/2, C/2  (0, /2)

A + B  (0, ) ; (A + B)/2  (0, /2) ;

A – B  (– , ) , (A – B)/2  (– /2, /2)

Dùng các tính chất này để chọn k

* Đổi cạnh ra góc (đôi khi đổi góc ra cạnh) : dùng định lý hàm sin :

a = 2RsinA hay định lý hàm cos : a2 = b2 + c2 – 2bc.cosA

R 4

abc C sin ab 2

1 ah 2

1

) c p )(

b p )(

a p (

* Trung tuyến : a 2 b2 2 c2 a2

2

1

* Phân giác : ℓa =

c

A cos bc 2

IV- TÍCH PHÂN

1 Định nghĩa, công thức, tính chất :

* F là 1 nguyên hàm của f  f là đạo hàm của F.

Họ tất cả các nguyên hàm của f :

 ( x ) dx= F(x) + C (C  R)

*



 

 du u C ; u du  u 1 C

1 ,   – 1

du ln u C; e du e C;

sinudu   cos u C

 ;  cos udu  sin u  C

 du / sin2u   cot gu  C ;  du / cos2u  tgu  C

a a

f(x)dx F(x) F(b) F(a)

*   b       

a

c a

b a

c b

a b

a

b

a

b

a

b

a

b

a

b

a

f k kf

; g f ) g

f

2 Tích phân từng phần :

udv uv   vdu

Thường dùng khi tính tích phân các hàm hỗn hợp

Trang 10

Phạm Thuỳ Linh – 12A10- THPT KT(06 – 09)

a  xnex ,  xnsin x ;  xncos x : u  xn

b  xnln x : u  ln x

c  exsin x ,  excos x : u  ex hay dv  exdx

từng phần 2 lần, giải phương trình ẩn hàm ʃ

3 Các dạng thường gặp :

a  sinmx cos n  1x : u = sinx.

 cosmx sin n  1x : u = cosx.

 sin2 mx cos nx : hạ bậc về bậc 1

b  tg2 mx / cos nx : u = tgx (n  0)

 cot g2 mx / sin nx : u = cotgx (n  0)

c  chứa a2 – u2 : u = asint

 chứa u2 – a2 : u = a/cost

 chứa a2 + u2 : u = atgt

d  R (sin x , cos x ) , R : hàm hữu tỷ

R(–sinx, cosx) = – R(sinx, cosx) : u = cosx

R(sinx, –cosx) = – R(sinx, cosx) : u = sinx

R(–sinx,–cosx) = R(sinx, cosx) : u = tgx  u = cotgx

R đơn giản :

2

x tg

u 

2

/

0

x 2 u đặt

thử

:

0

x u

đặt

thử

:

e  xm( a  bxn)p / q, ( m  1 ) / n  Z : uq  a  bxn

f  m  n p / q    Z : uqxn  a  bxn

q

p n

1 m , ) bx a

(

x

g

u

1 k hx : c bx ax ) k hx

/[(

h  R ( x , ( ax  b ) /( cx  d ) , R là hàm hữu tỷ : u  ( ax  b ) /( cx  d )

i  chứa (a + bxk)m/n : thử đặt un = a + bxk

4 Tích phân hàm số hữu tỷ :

 P ( x ) / Q ( x ) : bậc P < bậc Q

* Đưa Q về dạng tích của x + a, (x + a)n, ax2 + bx + c ( < 0)

* Đưa P/Q về dạng tổng các phân thức đơn giản, dựa vào các thừa số của Q :

n

n 2

2 1

n

) a x (

A

) a x (

A a

x

A )

a x ( , a x

A a

x

Ngày đăng: 01/04/2021, 07:57

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w