§3GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ Tiết 7 I/ Mục tiêu: 1/ Kiến thức: + Nắm được khái niệm về giá trị nhỏ nhất, giá trị lớn nhất của hàm số trên tập xác định + Biết dùng cô[r]
Trang 1§3GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ
Tiết 7
I/ Mục tiêu:
1/ Kiến thức:
+ khái ! " #$ giá &'( !) !*&+ giá &'( ,-! !*& ./ hàm 12 trên &45 xác (!
+ 7 8& dùng công < => hàm ? tìm giá &'( !) !*&+ giá &'( ,-! !*& ./ hàm 12 trên &45 xác
(!
2/ Kỹ năng:
+ Thành &=> # " ,45 AB!% A 8! thiên ./ hàm 12 trên &45 xác (! và theo dõi giá &'( ./ hàm 12 A 8! E trên &45 xác (! ? tìm giá &'( !) !*&+ giá &'( ,-! !*& ./ hàm 12
+ 4! 9<!% &2& quy & tìm giá &'( !) !*&+ giá &'( ,-! !*& ./ hàm 12 trên >=! [a; b]
3/ Tư duy, thái độ:
+ 4! 9<!% linh >=& các 5L!% pháp phù 5 cho &M!% bài toán < &?N
+ OB !P!% nhìn !4! quy các bài toán &Q & R! #$ tìm giá &'( !) !*&+ giá &'( ,-! !*& ./ hàm 12
II/ Chuẩn bị của GV & HS:
+ GV: Giáo án SH .+ AB!% 5< (Vd 1 SGK)
+ HS: XS! xem ,= qui trình xét $G A 8! thiên hàm 12+ SGK, sách bài &45N
III/ Phương pháp: Z0 &>= + % [+ nêu #*! $N
IV/ Tiến trình tiết dạy:
1/ Ổn định tổ chức:
2/ Kiểm tra bài cũ: (5’)
1 ( )
1
x
-3/ Bài mới:
HĐ1: Xây dựng khái niệm về giá trị nhỏ nhất, giá trị lớn nhất trên tập xác định
3’
Bài toán: Xét hàm 12
2
+ Tìm ^Z ./ h/s
+ Tìm &45 5 các giá &'( ./ y
+ X` ra GTLN, GTNN ./ y
GV !4! xét 8! khái ! "
giá &'( !) !*&+ giá &'( ,-!
!*&
a/ D= [ -3 ; 3]
b/
c/ y = 0 khi x = 3 >e
x = - 3 + y= 3 khi x = 0
a/ Hàm 12 xác (! trên
D= [-3;3]
b/
1/ Định nghĩa: SGK
HĐ 2: Dùng bảng biến thiên của hàm số để tìm giá trị nhỏ nhất, giá trị lớn nhất
M (! nghiã suy ra ?
tìm min, max ./ hàm 12
trên D ta S! theo dõi giá
&'( ./ hàm 12 #- x &Gg
Trang 28’
D jG2! #4H ta 5B xét
1Q A 8! thiên ./ hàm 12
trên &45 D
Vd1:Tìm max, min ./
y = - +x x +
Vd2: Cho y = x3 +3x2 + 1
a/ Tìm min, max ./ y
trên [-1; 2)
b/ Tìm min, max ./ y
trên [- 1; 2]
E!% 8& L!% pháp
tìm min, max trên D
+ Xét 1Q A 8! thiên ./
hàm 12 trên D, &M k 8&
,G4! giá &'( !) !*&+ giá
&'( ,-! !*&
+ Tìm ^Z + Tính y’
+ Xét 9*G y’ => AB!%
A 8! thiên + Theo dõi giá &'( ./ y
8& ,G4! min, max
Tính y’
+ Xét 9*G y’
+ 45 AB!% A 8! thiên 'n 8& ,G4!
Vd1:Tìm max, min ./ hàm 12
y = - +x x +
Giải
D= R y’ = -2x + 2; y’ =0 x=1
khi x=1
x R
y
Hàm 12 không có giá &'( min trên R
Vd2: Cho y = x3 +3x2 + 1 a/ Tìm min, max ./ y trên [-1; 2)
b/ Tìm min, max ./ y trên [- 1; 2]
B
D = R y’ = 3x2 + 6x y’ =0 x = 0 (y = ) >e
x = -2 (y = )
a/
[ 1;2 )
x
Không &n! &= GTLN ./ h/s trên [-1;2)
b/
[ 1;2 ]
[-1;2]
x
x
Î -Î
HĐ 3: Tìm min, max của hàm số y = f(x) với x thuộc đo [a;b]
ap! 9&
M vd2b => !4! xét !8G hs
liên &< trên [a;b] thì luôn
&n! &= min, max trên [a;b]
kN Các giá &'( này =&
+ Tính y’
+ Tìm x0 [a;b] sao cho f’(x0)=0 >e h/s không có =>
hàm &= x0
Quy &
SGK trang 21
Trang 3AB!% A 8! thiên hãy ` ra
cách tìm min, max ./ y =
f(x) trên [a;b]
VD: Cho y = - x4 +2x2 +1
Tìm min, max ./ y trên
[0;3]
+tính y’
+ y’=0 x0,x1,x1
+ Tính f(0); f(1); f(3) + KL
v hs trình bày ,w
% B trên AB!%
HĐ 4: Vận dụng việc tìm min, max để giải quyết các bài toán thực tế
10’
Có 1 &* nhôm hình
vuông =! a X& [ 4 góc
hình vuông 4 hình vuông
=! x n %45 ,= 1
hình g5 x !4& không
có !5N@ x ? g5 này
có &? tích ,-! !*&N
H: Nêu các kích &- ./
hình g5 x !4& này?
Nêu $G "! ./ x ?
&n! &= hình g5y
H: Tính &? tích V ./
hình g5 theo a; x
H: Tìm x ? V =& max
TL: các kích &- là: a-2x;
a-2x; x Z &n! &= hình g5 là:
0
2
a x
< <
V= x(a-2x)2 = 4x3 – 4ax2 + a2x
Tính V’= 12x2 -8ax + a2 V’=0 x 6a x 2a,
Xét 1Q A 8! thiên trên
( )0;
2
a
3
2 27
a
6
a
x =
Bài toán:
AB!%
4/ Củng cố: (2’)
+ khái ! "N
+ L!% pháp tìm min, max trên &45 D Ar!% cách dùng AB!% A 8! thiên ./ hàm 12
+ 8G D=[a;b] thì có &? không dùng AB!% A 8! thiên
5/ Hướng dẫn học bài ở nhà:
+ Gg (! !%{/ và ! 5L!% pháp tìm min, max trên &45 D
+ Bt 16 20 Bài &45 5S! ,GH"! &45 trang 23, 24 SGK
x V’
V
2
a
0
-3
2 27
a
6
a
Trang 4LUYỆN TẬP
Tiết 9
I/ Mục tiêu:
1/ Về kiến thức: Giúp v sinh ?G rõ Q &'(+ giá &'( ,-! !*&+ giá &'( !) !*& ./ hàm 12J
$G "! S! và ? có Q = + Q & ?G ./ hàm 12N
2/ Về kỹ năng: Rèn ,GH"! cho hoc sinh có } !P!% thành &=> trong # " tìm Q &'(+ GTLN,
GTNN ./ hàm 12 và A 8& ~!% 9<!% vào bài toán &Q &8N
II/ Chuẩn bị của GV và HS
1/ GV: Giáo án, AB!% 5<
2/ Hs: ! #x!% lí &GH8& #$ Q &'(+ GTLN, GTNN XG! A( &'- bài &45 [ nhà
III/ Phương pháp: [+ #*! 5
IV/ Tiến trình tiết dạy:
1/ Ổn định lớp:2’
2/ Kiểm tra bài cũ: 10’
H1: Nêu $G "! ? hàm 12 có Q &'(y
H2: Cho y= x3 + 3x2 +1
a/ Tìm Q &'( ./ hàm 12 trên
b/ Tìm GTLN, GTNN ./ hàm 12 trên [-1,2)
3/ Bài mới:
HĐ1: Tìm cực trị của h/s và giá trị của tham số để hàm số có cực trị.
15’
Yêu SG hs nghiên ~G bt
21, 22 trang 23
Chia hs thành 3 nhóm:
+Nhóm 1: bài 21a
+Nhóm 2: bài 21b
+Nhóm 3: bài 22
v = 9 "! &M!% nhóm lên
trình bày ,w % B N
+ w hs nhóm khác theo
dõi và !4! xét
+ GV ? tra và hoàn
`! ,w % B N
+ Làm # " theo nhóm
+ X = 9 "! nhóm trình bày ,w % B
+ Hsinh !4! xét
Bài 21/ 23: Tìm Q &'(
./ hàm 12 sau:
2 2
/
1
x
a y
x
= +
Bài 22: Tìm m ? h/s sau
có XZ+ CT
1
y
x
-=
-HĐ 2: Giải bài tập dạng: ứng dụng cực trị vào bài toán thực tế.
15’
Yêu SG hs nghiên ~G bài 23 /23
ý: XGH?! &M bài toán &Q
&8 sang bài toán tìm giá &'( ./
A 8! ? _12 =& GTLN, GTNN
+
H1: Tính , $G &G2 S! tiêm &~
HS nghiên ~G $
toán và tìm -!%
% B bài toán
Bài &45 23/ 23:
Zg % B GH8& áp ./ A"! nhân là:
G(x) = 0,025x2(30-x)
#- x(mg): , $G ,!%
&G2 tiêm
Trang 5Ycbt tìm x ? G(x) =& GTLN
#- x>0
v hsinh trình bày ,w % B
v hsinh khác !4! xét
GV `! 1/+ hoàn `!N
+HS tóm && $N +HS phát "! và trình bày ,w % B [
% *H nháp +Hs trình bày ,w % B +HS !4! xét
HS trình bày AB!%
HĐ3: Tìm GTLN, GTNN của hàm số
12’
Yêu SG nghiên ~G bài 27
trang 24 v! % B câu a,c,d
v 1 v sinh ! ,=
quy & tìm GTLN, GTNN
./ h/s trên [a,b]
*Chia ,-5 thành 3 nhóm:
+Nhóm 1: % B bài 27a
+Nhóm 2: % B bài 27c
+Nhóm 3: % B bài 27d
*Cho 4phút B 3 nhóm suy
!%{
jw = 9 "! &M!% nhóm lên
trình bày ,w % B N
(Theo dõi và % ý &M!%
nhóm)
jw hs nhóm khác !4! xét
GV ? tra và 8& ,G4!
L!% pháp tìm GTLN,
GTNN ./ hàm ,!% giác
HS nghiên ~G $
+HS ! ,= quy &N
XB ,-5 theo dõi và !4!
xét
+ Làm # " theo nhóm
+ X = 9 "! trình bày ,w
% B N
+ HS !4! xét, B ,-5 theo dõi và cho ý 8!N
Bài 27/ 24: Tìm GTLN, GTNN ./ h/s:
a) y = 32x trên
3;1
b) y = x + 2
4x
c)y = sin4x +cosx2 +2 d) y = x – sìn2x trên
2 ::
HS trình bày AB!%
4/ Củng cố: (3’) ,= $G "! ? /12 có Q &'(+ quy & tìm GTLN, GTNN ./
12 trên >B!%+ >=!N
5/ Hướng dẫn học ở nhà:
+ G ý cách GH?! bài toán tìm GTLN, GTNN ./ hàm 12 ,!% giác #$ bài toán 9=!% /
&~N
+ Ôn } ,= lý &GH8& và % B các bài &45 24, 25, 27, 28 SGK trang 23
...a/ Tìm Q &''( ./ hàm 12
b/ Tìm GTLN, GTNN ./ hàm 12 [-1,2)
3/ Bài mới:
HĐ1: Tìm cực trị h/s giá trị tham số để hàm số có cực trị.
15’
Yêu... & ?G ./ hàm 12N
2/ Về kỹ năng: Rèn ,GH"! cho hoc sinh có } !P!% thành &=> # " tìm Q &''(+ GTLN,
GTNN ./ hàm 12 A 8& ~!% 9<!% vào toán &Q... ./ hàm 12
y = - +x x +
Giải< /b>
D= R y’ = -2x + 2; y’ =0 x=1
x=1
x R
y
Hàm 12 khơng có giá