1. Trang chủ
  2. » Cao đẳng - Đại học

Đề cương ôn tập học kỳ II - Khối 10 môn Toán

3 11 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 165,26 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Bài2: Viết phương trình chính tắc của elip ẠầỐ trong mỗi trường hợp sauả a Độ dài trục nhỏ bằng ạủ và có tiêu cự bằng ạƠệ b Tiêu điểm F212;0 và điểm M13;0 nằm trên elipằ c Độ dài trục lớ[r]

Trang 1

ĐỀ CƯƠNG ÔN TẬP HỌC KỲ II – KHỐI 10

(Năm họcả ủộạạ – 2012) - -

A ĐẠỌ ỏỐả

I - BẤỉ ĐẲỗở ỉỢỨế:

Bài ạả Chứng minh rằng

1) a2 – 3a + 3 > 0 , aR, 2) a2 + b2  2ab , a, bR,

3) a2 +3a +3 > 0 aR 4) a2 + b2 + 4  ab + 2(a +b) , a, bR

5) a4 + 16  2a3 + 8a , aR 6) a3 + b3  ab(a+b) , a, b  0,

7) a3b + ab3  a4 + b4 , a, bR 8) a b a b

ba   , a, b > 0 Bài 2: Chứng minh rằng

1) Cho a , b , c là độ dài ba cạnh của một tam giácằ ếựụả

a a2+ b2 + c2 < 2(ab +bc +ca)

b abc  (a + b – c).(b + c – a).(c + a – b) > 0

2) Cho a + b = 1 CMR: a2 + b2 1

2

 3) Cho x + y + z = 1 CMR: 2 2 2 1

3

xyz

Bài 3: Chứng minh rằng

1) 1 1 1 9

  (a, b, c > 0) 2)

1 1 1

bccaab  a b c (a, b , c > 0) 3)ab bc ca a b c

cab    (a, b, c > 0) 4) a b  1 b a  1 ab a, b  1

Bài4:.Tìm ởỉẳỗ của hàm số sau

1) y = (x + 5)(7 – x) với -5  x  7 2) y = (2x - 3)(10 – 3x) với 3 10

2  x 3

Bài5:Tìm ởỉỗỗ của hàm số sau

1) y = 5 8

x

x

 với x ậ -5 2) y =

9 2

x x

 với x ậ ủ

II – HỆ BẤỉ PHƯƠỗở TRÌỗỢ ồẬế ỗỢẤỉ ựỘỉ Ẩỗ ỏỐả

Giải các hệ bất phương trình sauả

1) 3 5 2 1

4 1 3 2

 2)

4 7 8

2 3 12

  

5 2 4 5

5 4 2

4) 2 1 3 4

5 3 8 9

1 2

2

4 3 2 5

6)

6 5 2 4

6 2 4 3



III – DẤắ ỗỢỊ ỉỢỨế ồẬế ỗỢẤỉả

Bài1: Lập bảng xét dấu các biểu thức sauằ

1) ( ) 4 3

2 1

x

f x

x

 2) f x( ) 2 3  x5x 1 3) 2

( ) ( 2) (3 )

f xx x x 4) f(x)=1 2

3 2

x x

Bài2: Giải các bất phương trình sau

1) 4 1 3

3 1

x

x

3 5

1 x 2x 1

(3 )( 2)

0 1

x x x

 4)| 2x3 |  |1 x| 3x2

IV - DẤắ ỉờự ỉỢỨế ồẬế ỢờỌ:

Bài1: Xét dấu các tam thức bậc hai sau

a) f(x) = 2x2+5x+2 b) f(x) = 4x23x1 c) f(x) = 3x2

+5x+1 d) f(x) = 3x2+x+5 Bài2: Giải các bất phương trình sau

Trang 2

a) x22x+3>0 b) x2+9>6x c) 6x2x20 d) 1

3x2+3x+6<0 e)

2

2

9 14

0

9 14

2 2

1 0

3 10

x

10 1

2 5

x x

2 1

 

Bài3: Tìm các giá trị của m để các phương trình sau có nghiệm (có 1 nghiệm, 2

nghiệm, có nghiệm kép, vô nghiệm):

a) (m-5)x2-4mx+m-2 = 0 b) (m-2)x2+2(2m-3)x+5m-6 = 0

c) (3-m)x2-2(m+3)x+m+2 = 0 d) x26mx+22m+9m2

=0

V - PHƯƠỗở ỏờỌ VÀ ĐỘ ẳỆếỢ CHUẨỗ:

Bài1: Hai lớp ạộờ và ạộồ của một trường ỉỢừỉ đồng thời làm bài thi môn Văn theo cùng một đề thi, kết quả thu được như sauả

Lớp ạộờả

Điểm thi 5 6 7 8 9 10 Cộng Tần số 1 9 12 14 1 3 40 Lớp ạộồả

Điểm thi 6 7 8 9 Cộng Tần số 8 18 10 4 40 a) Tính số trung bìnhỨ phương saiỨ độ lệch chuẩn của các bảng số liệu trênằ

b) Nhận xét xem lớp nào học đều hơnằ

Bài2: Điều tra tiền lương hàng tháng của ớộ công nhân ở một xưởng mayỨ ta có bảng phân bố tần số sauả

Tiền lương 300 500 700 800 900 1000 Cộng

Tính số trung bìnhỨ phương saiỨ độ lệch chuẩn của các bảng số liệu trênằ

VI - CUNG VÀ ởÓế ẳƯỢỗở ởỌÁế CÔỗở ỉỢỨế ẳƯỢỗở ởỌÁếả

Bài1: Tính  biết ả

a) cos  = 1 b) cos  =1 c) cos  = 0

d) sin  = 1 e) sin  =1 f) sin  = 0

Bài2: Tính các giá trị lượng giác còn lại của cung  biếtả

a) sin = 3

5 và

2

 

  b) cos = 4

15 và 0

2

  

c) tan = 2 và 3

2

2

   

Bài3: Tính cosủ ,sin2 ,tg2 biết:

a) cos =  3

15 và

2

 

  b) sin = 0.6 và 3

2

B HÌỗỢ ỢỌế:

I - HỆ ỉỢỨế ẳƯỢỗở ỉụặỗở ỉờự ởỌÁế:

Bài1: Cho tam giác ờồế, biết b = 8; c = 5; A= 600 Tính a, S, ha , R , r

Bài2: Cho tam giác ờồế, biết a = 7; b = 5; c = 8 Tính S, ha , R , r

Bàiớả Cho tam giác ờồế có b Ị ỆỨ c Ị ớ Ứ ỏỊ3 3 Tính cạnh aằ

BàiỆả Cho tam giác ờồế có b Ị ƠỨ c Ị Ậ Ứ C = 600 Tính cạnh aằ

II – PHƯƠỗở ỉụÌỗỢ ĐƯỜỗở ỉỢẲỗởả

Bài1: Viết phương trình tham số và phương trình tổng quát của đường thẳng :

a) đi qua ờ Ạớệ ủỐ và ồ Ạ-1;-5) b) đi qua M (-1; 4) và có Vỉừỉ n (4; 1) c) đi qua N (1; 1) và có hệ số góc k = 2 d) đi qua K (2;3) và có VTCP a



=(4; 6)

Trang 3

Bài2: Viết phương trình các đường trung trực của ABC biết trung điểm các cạnh AB,

BC, CA lần lượt là ờ (-1;-1), B (1; 9), C (9; 1)

Bài3:Xét vị trí tương đối của mỗi cặp đt sau và tìm giao điểm Ạnếu cóỐ của chúngằ a) d: 2x – 5y + 3 = 0 và : 5 x + 2y – 3 = 0 b) d: 4x –10y + 1=0 và :

t 2 3 y

t 2 1 x

c) d: 6x – 3y + 5 = 0 và :

 t 2 3 y

t 5 x

d) d:

 t 3 y

t 2 2 x

và :

 t 4 6 y

t 5 6 x

Bài4:Cho ABC với ờẠủỨ ủỐỨ ồẠ-1, 6), C(-5, 3)

a) Viết phương trình các cạnh  ABC b) Viết pt đường cao ờỢ của  ABC c) Cmr ABC là tam giác vuông cân, từ đó suy ra diện tích ABC

d) Tìm toạ độ trọng tâm ởỨ trực tâm Ợằ

Bài5: Cho A(3; 1) và ồẠ–1; 2) và đt : x – 2y + 1 = 0 Tìm tọa độ điểm ế đểả a) ABC cân tại ờằ b) ABC vuông tại ếằ

Bài6: Cho hai đường thẳng d1 : x2y+5=0 và d2 :3xy=0

a) Tìm giao điểm của d1 và d2 b) Tìm góc giữa d1 và d2

c) Tính khoảng cách từ điểm A(2;3) đến đường thẳng d1 và d2

III – PHƯƠỗở ỉụÌỗỢ ĐƯỜỗở ỉRÒỗ:

Bài1: Lập phương trình của đường tròn ẠếỐ trong các trường hợp sauả

a) Có tâm ỌẠủệ-3) và đi qua ờẠ-5; 4) b) Có tâm ỌẠƠ ệ – 7) và tiếp xúc với ặxằ c) Có đường kính ờồ với ờẠạệ ạỐ và ồẠẬệ ƯỐằ d) Đi qua ờẠ–2; 4), B(5; 5) và ếẠƠ ệ –2) e) Có tâm ỌẠ–1; 2) và tiếp xúc với đường thẳng : x – 2y + 7 = 0

f) Có tâm thuộc đường thẳng : 2x + 7y + 1 = 0 và đi qua M(2; 1) và ỗ Ạạệ-3)

Bài2:Cho đường tròn ẠếỐ có phương trình x2 + y2 – 4x + 6y – 12 = 0

a) Xác định tọa độ tâm Ọ và bán kính ụ của đường tròn ẠếỐằ

b) Tính khoảng cách từ điểm Ọ tới đường thẳng ẠdỐ có phương trình x – 3y – 1= 0

Bài3:Viết phương trình tiếp tuyến với đường trònả

a) (C): x2 + y2 – 3x + 4y – 25 = 0 tại ựẠ– 1 ; 3)

b) (C): 4x2 + 4y2 – x – 9y + 2 = 0 tại ựẠộ ệ ủỐ

c) (C): x2 + y2 – 4x + 4y + 3 = 0 tại giao điểm của ẠếỐ với trục hoànhằ

d) (C): x2 + y2 – 6x + 8y – 7 = 0 tại ựẠ– 1 ; 0)

IV – PHƯƠỗở ỉụÌỗỢ ĐƯỜỗở ầẳỌừ:

Bài1:Xác định trục lớnỨ trục nhỏệ tiêu điểmệ tiêu cựệ đỉnhệ tâm saiệ Ợình chữ nhật cơ sởằ của elip (E) có phương trình sau:

a)

2 2

1

25 9

  b) 4x2+9y2= 36 c) x2+4y2= 4 d) 4x2+4y2= 16

Bài2: Viết phương trình chính tắc của elip ẠầỐ trong mỗi trường hợp sauả

a) Độ dài trục nhỏ bằng ạủ và có tiêu cự bằng ạƠệ

b) Tiêu điểm F2(12;0) và điểm M(13;0) nằm trên elipằ

c) Độ dài trục lớn bằng ủƠ và tỉ số c

a = 5

13; d) Tiêu điểm ẩ1(6;0) và tỉ số c

a = 2

3 e) Độ dài trục lớn bằng ạộ và tiêu cự bằng Ơệ

f) Một tiêu điểm ẩ1(2;0) và độ dài trục lớn bằng ạộệ

g) Đi qua hai điểm ựẠạệộỐ và ỗẠ 3

2 ;1); k) Độ dài trục lớn bằng ỘỨ tâm sai 7

4 ; h) Tiêu điểm ẩ1(4;0), F2(4;0), tâm sai e = 2

3;

Ngày đăng: 01/04/2021, 04:40

🧩 Sản phẩm bạn có thể quan tâm

w