1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Bài giảng Toán C1: Chương 2 - ThS. Huỳnh Văn Kha - Trường Đại Học Quốc Tế Hồng Bàng

10 9 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 1,13 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

VI PHÂN HÀM HAI BIẾN Huỳnh Văn Kha. Khoa Toán – Thống Kê.[r]

Trang 1

Chương 2

VI PHÂN HÀM HAI BIẾN

Huỳnh Văn Kha

Khoa Toán – Thống Kê

Trang 2

Nội dung

Huỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 2: Vi phân hàm hai biến Toán C1 - MS: C01009 1 / 32

Trang 3

Hàm hai biến

Định nghĩa

Một hàm hai biến f là một quy tắc cho tương ứng mỗi

duy nhất một số thực được ký hiệu là f (x , y )

tập: V = {f (x , y )|(x , y ) ∈ D}

Trang 4

Ví dụ

Huỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 2: Vi phân hàm hai biến Toán C1 - MS: C01009 3 / 32

Trang 5

Đồ thị

Định nghĩa

của f được định nghĩa là tập hợp các điểm (x , y , z)

Trang 6

Huỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 2: Vi phân hàm hai biến Toán C1 - MS: C01009 5 / 32

Trang 7

Hàm nhiều biến

Một hàm ba biến f là một quy tắc cho tương ứng mỗi

thực, ký hiệu là f (x , y , z)

Ví dụ: f (x , y , z) = ln(z − y ) + xy sin z

Một hàm n biến là một quy tắc cho tương ứng mỗi bộ n

là f (x1, x2, , xn)

Trang 8

Giới hạn hàm hai biến

(a, b) đều có chung với D ít nhất là một điểm khác (a, b)

Định nghĩa

Cho f là hàm hai biến với tập xác định D, và (a, b) là

tiến về (a, b) là L nếu với mọi ε > 0 đều có tương ứng một số δ > 0 sao cho:

Nếu (x , y ) ∈ D và 0 < p(x − a)2 + (y − b)2 < δ thì

|f (x, y ) − L| < ε

(x ,y )→(a,b)f (x , y ) = L hoặc lim

x →a

y →b

f (x , y ) = L

Huỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 2: Vi phân hàm hai biến Toán C1 - MS: C01009 7 / 32

Trang 9

Chú ý:

|f (x, y ) − L| là khoảng cách từ số f (x, y ) tới số L

(x , y ) tới điểm (a, b)

Trang 10

Dãy điểm (xn, yn) gọi là hội tụ về (a, b) nếu xn → a và

Định lý

lim

(x ,y )→(a,b)f (x , y ) = L khi và chỉ khi với mọi dãy (xn, yn)

Huỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 2: Vi phân hàm hai biến Toán C1 - MS: C01009 9 / 32

Ngày đăng: 01/04/2021, 01:53

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm