Môc tiªu : - Học sinh hiểu được cách phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức.. - Học sinh biết vận dụng các hằng đẳng thức đã học vào việc phân tích đa thức [r]
Trang 1Tiết 9 Ngày dạy: 28/09/09
$6 phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
I Mục tiêu :
- HS hiểu thế nào là phân tích đa thức thành nhân tử
- Biết cách tìm nhân tử chung và đặt nhân tử chung
II Chuẩn bị của giáo viên và học sinh :
GV: Giáo án
HS : Giải các bài tập đã cho về nhà ở tiết =>?@ SGK
III Tiến trình dạy học :
Hoạt động 1 :
Ví dụ :
34.76 + 34.24
Trong hai hạng tử của tổng có
nhân tử (hay thừa số) nào chung ?
Nhờ vào tính chất phân phối của
phép nhân đối với phép cộng, em
nào có thể biền đổi biểu thức trên
thành tích ?
Ví dụ 1 :
Hãy viết 2x2 - 4x thành một tích
của những đa thức
Gợi ý: Ta thấy 2x2 = 2x.x
4x = 2x.2
Việc biến đổi 2x2 -4x thành tích
2x( x - 2) gọi là phân tích đa thức
2x2 - 4x thành nhân tử
Vậy phân tích đa thức thành nhân
tử là gì ?
Cách làm > ví dụ trên gọi là
phân tích đa thức thành nhân tử
bằng phương pháp đặt nhân tử
chung
Một em lên làví dụ 2:
Phân tích đa thức 15x3 - 5x2 + 10x
thành nhân tử
Phần hệ số có nhân tử nào chung?
( 5 là nhân tử chung; 5 là ƯCLN
của các hệ số: 15, 5, 10 )
Phần biến có nhân tử nào chung ?
(Nhân tử chung là x; x có mặt
trong mọi hạng tử, có số mũ nhỏ
nhất )
HS:
Trong hai hạng tử của tổng có nhân tử 34 là nhân tử chung
34.76 + 34.24 = 34( 76 + 24 ) = 34.100
Ví dụ 1 : Viết 2x2 - 4x thành một tích của những đa thức:
2x2 - 4x = 2x.x - 2x.2 = 2x( x - 2)
HS:
Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức
đó thành một tích của những đa thức
Ví dụ 2:
Phân tích đa thức 15x3 - 5x2 + 10x thành nhân tử
Giải 15x3 - 5x2 + 10x
= 5x.3x2 - 5x.x + 5x.2
= 5x( 3x2 - x + 2 )
1) Ví dụ : ( SGK )
Phân tích đa thức thành nhân
tử (hay thừa số) là biến đổi
đa thức đó thành một tích của những đa thức
Trang 2Hoạt động 2 : Thực hiện ?1
Ba em lên bảng mỗi em giải một
câu
Phân tích các đa thức sau thành
nhân tử :
a) x2 - x
b) 5x2( x - 2y ) - 15x( x - 2y )
c) 3( x - y ) - 5x( y - x )
Chú ý:
Nhiều khi để làm xuất hiện nhân tử
chung ta cần đổi dấu các hạng tử
( !> ý tới tính chất A = -(-A))
Hoạt động 3 : Thực hiện ?2
Một em lên bảng làm ?2
Tìm x sao cho 3x2 - 6x = 0 ?
Các em sinh hoạt nhóm để giải ?2
Câu hỏi gợi ý :
Phân tích đa thức 3x2 - 6x thành
nhân tử ? ( ta %>X 3x( x - 2 ))
Tích trên bằng 0 khi nào ?
Củng cố :
Cách tìm nhân tử chung với các đa
thức có hệ số nguyên
– Hệ số là ƯCLN của các hệ số
nguyên >g của các hạng tử
– Các luỹ thừa bằng chữ có mặt
trong mọi hạng tử với số mũ của mỗi luỹ
thừa là số mũ nhỏ nhất của nó
Làm bài tập 39
Hai em lên bảng mỗi em làm một
câu a, b ?
Hai em lên bảng mỗi em làm một
câu c, d ?
Bài tập về nhà :
40, 41, 42 trang 19
?1 : Phân tích các đa thức sau thành nhân tử :
Giải a) x2 - x = x.x - x.1 = x( x - 1 )
b) 5x2( x - 2y ) -15x( x - 2y )
= 5x( x - 2y ).x - 5x( x - 2y ).3
= 5x( x - 2y )( x -3 ) c) 3( x - y ) - 5x( y - x )
= 3( x - y ) + 5x( x - y )
= ( x - y)( 3 + 5x )
?2 Tìm x sao cho 3x2 - 6x = 0 Giải
3x2 - 6x = 0 Phân tích đa thức 3x2 -6x thành nhân tử ta %>X
3x(x - 2) = 0 Tích 3x(x - 2) = 0 khi 3x = 0 hoặc x - 2 = 0
x = 0 hoặc x = 2
Vây khi x = 0 hoặc x = 2 thì
3x2 - 6x = 0
39/19 Phân tích các đa thức sau thành nhân tử :
a) 3x - 6y = 3( x - 2y
2 3 2
5 5
2
y x
5
2
2
c) 14x2y - 21xy2 + 28x2y2 = 7xy( 2x - 3y + 4xy )
5
2 1 5
2
y x
= y1xy 5
2
2) áp dụng:
Phân tích các đa thức sau thành nhân tử :
Giải a)x2 - x = x.x - x.1=x( x - 1)
b) 5x2( x - 2y ) - 15x( x - 2y )
= 5x( x -2y ).x - 5x( x -2y).3
= 5x( x - 2y )( x - 3 ) c) 3( x - y ) - 5x( y - x )
= 3( x - y ) + 5x( x - y )
= ( x - y)( 3 + 5x ) Chú ý : (SGK)
?2 Tìm x sao cho 3x2 - 6x = 0 Giải
3x2 - 6x = 0 3x(x - 2) = 0
3x = 0 hoặc x - 2 = 0
x = 0 hoặc x = 2
Vây khi x = 0 hoặc x = 2 thì 3x2 - 6x = 0
Trang 3Tiết 10 Ngày dạy: 30/09/09
$7 phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
I Mục tiêu :
- Học sinh hiểu %>X cách phân tích đa thức thành nhân tử bằng ">g pháp dùng hằng
đẳng thức
- Học sinh biết vận dụng các hằng đẳng thức đã học vào việc phân tích đa thức thành nhân tử
II Chuẩn bị của giáo viên và học sinh :
GV : Giáo án
HS : Giải các bài tập đã cho về nhà ở tiết =>?
III Tiến trình dạy học :
Hoạt động 1 : Kiểm tra bài
cũ
Một em viết các hằng đẳng
thức :
A2 + 2AB + B2 = ?
A2 - 2AB + B2 = ?
A2 - B2 = ?
A3 + 3A2B + 3AB2 + B3 = ?
A3 - 3A2B + 3AB2 - B3 = ?
A3 + B3 = ?
A3 - B3 = ?
Hoạt động 2 :
1) Ví dụ :
Các em phân tích các đa thức
sau thành nhân tử :
a) x2 - 4x + 4
b) x2 - 2
c) 1 - 8x3
Hoạt động 3 :
Các em thực hiện
Phân tích các đa thức sau
thành nhân tử :
a) x3 + 3x2 + 3x + 1
b) ( x + y )2 - 9x2
HS : Các hằng đẳng thức :
A2 + 2AB + B2 = ( A + B )2
A2 - 2AB + B2 = ( A - B )2
A2 - B2 = ( A + B )(A - B )
A3 + 3A2B + 3AB2 + B3 = (A + B)3
A3 - 3A2B + 3AB2 - B3 = (A - B)3
A3 + B3 = (A + B )( A2 - AB + B2 )
A3 - B3 = (A - B )( A2 + AB + B2 )
HS : Giải a) x2 - 4x + 4 = x2 - 2x.2 + 22 = ( x - 2 )2 b) x2 - 2 = 2
2
x
= x 2x 2
c)1 - 8x3 = 13 - 2x)3 = (1 - 2x )(1 + 2x + 4x2)
Giải Phân tích các đa thức thành nhân tử :
a) x3 + 3x2 + 3x + 1 = x3 + 3x2.1 + 3x.12 + 13 = ( x + 1 )3
( x + y )2 - 9x2 = ( x + y )2 - (3x)2
= ( x + y + 3x )(x + y - 3x )
= ( 4x + y )( y - 2x )
1) Ví dụ : Phân tích các đa thức sau thành nhân tử :
a) x2 - 4x + 4 b) x2 - 2 c) 1 - 8x3 Giải a) x2 - 4x + 4 = x2 -2x.2 + 22 = ( x - 2 )2 b) x2 - 2 = 2
2
x
= x 2x 2
c)1 - 8x3 = 13 - 2x)3 = (1 - 2x )(1 + 2x + 4x2) Cách làm > các ví dụ trên gọi là phân tích đa thức thành nhân tử bằng ">g pháp dung hằng đẳng thức
Trang 4Các em thực hiện
Tính nhanh : 1052 - 25
Hoạt động 4 : áp dụng
Để chứng minh rằng
( 2n + 5 )2 - 25 chia hết cho 4
với mọi số nguyên n
ta phải làm sao ?
Củng cố :
Hai em lên bảng :
Một em giải bài tập 43a)/ 20
Một em giải bài tạp 43b)/ 20
Cả lớp giải bài 43/20
Bài tập về nhà :
44, 45, 46 trang 20, 21
Giải Tính nhanh :
1052 - 25 = 1052 - 52 = ( 105 + 5 )(105 - 5 ) = 110.100 = 11000
HS :
Để chứng minh rằng (2n + 5)2 - 25 chia hết cho 4 với mọi số nguyên n
ta phải phân tích đa thức trên thành một tích có chứa một thừa
số là 4
HS : Bài 43 / 20 Phân tích đa thức thành nhân tử : a) x2 + 6x + 9 = x2 + 2x.3 + 32 = ( x + 3 )2 b) 10x - 25 - x2
= - ( x2 - 10x + 25 ) = - ( x2 - 2x.5 + 52 ) = - ( x - 5 )2
2) áp dụng :
Ví dụ Chứng minh rằng (2n + 5)2 - 25 chia hết cho 4 với mọi số
nguyên n Giải
Ta có : ( 2n + 5 )2 - 25 = ( 2n + 5 )2 - 52
= ( 2n + 5 + 5 )(2n + 5 - 5 )
= ( 2n + 10 )2n = 4n( n + 5 ) nên (2n + 5)2 - 25 chia hết cho 4 với mọi số nguyên n
... data-page="3">Tiết 10 Ngày dạy: 30/09/09
$7 phân tích đa thức thành nhân tử phương pháp dùng đẳng thức
I Mục tiêu :
- Học sinh hiểu %>X cách phân tích đa thức thành nhân. ..
Phân tích đa thức sau thành nhân tử :
Giải a)x2 - x = x.x - x.1=x( x - 1)
b) 5x2( x - 2y ) - 15x( x - 2y )
= 5x( x -2 y ).x - 5x( x -2 y).3... : Phân tích đa thức sau thành nhân tử :
Giải a) x2 - x = x.x - x.1 = x( x - )
b) 5x2( x - 2y ) -1 5x( x - 2y )
= 5x( x - 2y ).x - 5x( x - 2y