1. Trang chủ
  2. » Tài Chính - Ngân Hàng

Bồi dưỡng học sinh giỏi môn Hình học 8 - Trường THCS Nghĩa Đồng

8 75 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 126,68 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Bài 2: 1/ Tính diện tích hình chữ nhật biết rằng trong hình chữ nhật có một diểm M cách đều ba cạnh và giao điểm của hai đường chéo và khoảng cách đó là 4cm 2/ Tính diện tích hình thang [r]

Trang 1

I Tổng hợp 1:

Bài 1 : Cho

và 10

a/ Tính   các góc   giác ABCD

b/ Kéo dài hai - AB và DC  nhau / E, kéo dài hai - AD và BC  nhau / F Hai tia phân giác  các góc AED và góc AFB  nhau / O Phân giác

- MN

Bài 2: Cho hình thang ABCD ( AB//CD).

a/

b/  minh <A  AD = AB + CD thì hai tia phân giác  hai góc A và

D

Bài 3: Cho hình

- BC

Bài 4: Cho hình bình hành ABCD, hai LM chéo  nhau / O Hai LM N d1

/ M và P QLM N d2  các - BC và AD / N và Q

a/  minh  giác MNPQ là hình thoi

b/ : ABCD là hình vuông thì  giác MNPQ là hình gì?  minh

Bài 5: Cho

CD là M và N Trung

a/  minh  giác MNPQ là hình thoi

b/ Hai

AGB  minh Gx//MN

II Diện tích hình chữ nhật - hình vuông - hình tam giác:

Trang 2

Bài 1:Cho hình I  ABCD có AB = 5cm, BC = 4cm Trên - AD ,X tam giác ADE sao cho AE và DE

Bài 2:

1/ Tính

cách

2/ Tính

 ` A 1350

Bài 3 :

1/

tam giác vuông cân

- F\

2/

Bài 4 : Cho hai hình vuông có - a và chung nhau ;[ 1 -  ;[ hình

vuông

III Diện tích tam giác:

Bài 1:

1/ Cho hình

sao cho MC = 2cm,

2/ Cho hình

ABCD

MCD S S

Bài 2: Cho tam giác ABC Các

Bài 3: Cho hình thang ABCD, BC//AD Các

<A SOAB = SOCD và d  suy ra OA.OB = OC.OD

Trang 3

Bài 4:

a/  minh <A các LM trung F  tam giác chia tam giác thành 6

Bài 5: Cho tam giác vuông ABC vuông

ngoài  tam giác ,X các hình vuông ABED, ACPQ và BCMN QLM cao AH

a/ SBHFN = SABED, d  suy ra AB2 = BC.BH

b/ SHCMF = SACPQ, d  suy ra AC2 = BC.HC

IV Diện tích hình thang - Hình bình hành - Hình thoi

Bài 1:

1/ Cho hình

 ABCD

2/ QLM chéo  hình thoi A 18 cm; 24cm Tính chu vi hình thoi và

Bài 3:

a/ Tính

b/ Hai

Bài 4: Cho hình bình hành ABCD, trên tia

tia DA

ABOD và CEOK A nhau

3 1

Trang 4

V Tổng hợp 2

Bài 1: Cho hình I  ABCD có - AB = 4cm, BC = 3cm *J các tia phân giác  các góc trong, chúng  nhau / M, N, P, Q

a/  minh  giác MNPQ là hình vuông

b/ Tính

Bài 2: Cho tam giác \ ABC

a/  minh 3 LM cao  tam giác  A nhau

b/

 tam giác \   các -  tam giác không 5i [ vào j trí  D

Bài 3: Cho tam giác cân ABC (AB = AC),

Tia BO

tích tam giác ABC

Bài 4: Cho hình bình hành ABCD

BM và DN

a/

b/  minh IA là phân giác  góc BID

Bài 5: Cho hình bình hành ABCD

AB, BC, CD, DA

 DP / N và CS  RB / M

a/  minh  giác MNIK là hình bình hành

b/  minh AQ và

5

2

5

2

KN 

c/

5 1

hành ABCD

Bài 6: Cho hình bình hành ABCD và

Trang 5

VI Định lý Talét trong tam giác

Bài 1: Cho hình thang ABCD, (AB//CD), AB = a, CD = b Hai LM chéo  nhau

a/  minh IE = IF

b/ Tính EF theo a và b

Bài 2: *J LM cao BD và CE  tam giác ABC và các LM cao DF và EG  tam giác ADE

a/  minh   AD.AE= AC.AF

b/  minh FG//BC

Bài 3: Cho góc xOy, trên

ON

OQ OM

OP

Bài 4: Cho hình bình hành ABCD, qua  D 2J ;[ LM N 1 nó  các LM

a/ DM2 = MN.MK

DK

DM DN

Bài 5:

N và P A; trên ;[ LM N khi và  khi: 1

AP

CP CN

BN BM

Bài 6: QLM N a  các - AB, AD và LM chéo AC  hình bình hành

ABCD theo  X E, F, M  minh:

AM

AC AF

AD AE

AB

Bài 7: Cho hình bình hành MNPQ

NP, PQ, QN theo  X A, B, C  minh:

a/ AN.BQ không

b/ MC2 = AC.BC

Trang 6

VII Tính chất đường phân giác của một tam giác

Bài 1: Cho tam giác ABC

trong BD và CE

a/ Tính các - N AE, AD, EF, DC

7

40

BK  quy

Bài 2: Cho tam giác ABC có ba

giác AD, BE, CL

a/ Tính CE

b/ Tính BC

c/ Tính  

OB OE

d/  minh 1

EA

EC DC

BD LB

Bài 3: Cho tam giác ABC (AB  AC) Qua trung

AB và AC theo  X D và E  minh <A BD = CE

VIII Tam giác đồng dạng và các trường hợp đồng dạng của hai tam giác

Bài 1: ( giác ABCD có Bˆ  Dˆ 900

AC 2J MP BC, MQAD  minh: 1

CD

MQ AB

MP  

Bài 2: Cho tam giác ABC có AB = 15cm, AC = 20cm Trên hai - AB và AC Y

C

Bˆ A D

Bài 3:

 minh: AD.BD=DK.DE

Trang 7

IX Tổng hợp hình học phẳng

Bài 1: Cho hình thoi ABCD P là AB

3

1

AP 

3

1

CQ  a/ Tam giác BID là tam giác gì? Vì sao?

b/

c/

Bài 2: Cho tam giác ABC (AB AC) và

M, N

a/

b/ : OH = OE:

- ( giác AMON là hình gì? Vì sao?

- Tính góc BAC

Bài 3: Cho tam giác AOB (OA=OB) Qua B

AO / C

a/

b/

AD  tia OA / F  minh OA2 = OD.OF

c/

OA / P Tam giác APB là tam giác gì? Vì sao ?

d/  minh OE.AP=OA.EB

Bài 4 : Cho hình vuông ABCD

2a, DP = 2a, AQ = 3a

a/  minh <A tam giác IAD, MCN và DPQ là các tam giác r ,-&

Trang 8

b/ Tam giác MNQ là tam giác gì? ( giác MNPQ là hình gì?

c/

MQ

d/

e/

QN, và CD

Bài 5: Cho hnh thang vung ABCD,  F AB và CD , AB = m, CD =n x

BC = m+n

a/  minh câc tam giâc AEB x tam giâc BOC x tam giâc vung

b/  minh AD2 = 4ab

c/

giâc OIEH, AHID x hnh g?

d/ Tnh SOIEH x SAHID

X Hình học không gian

Bài 1: Cho hình [5 I  ABCD.A1B1C1D1  ^ <A 

a/ ( giác A1B1C1D1 là hình I 

b/ A1C = D1B = C1A = B1D

Bài 2: Cho hình chóp SABC có ;b  F và các ;b bên là I tam giác \ -

10cm Tính

Bài 3:

C’

a/ Tính LZ không khí trong \ C

b/ Tính 4,5cm 7,5cm A’ B’

A B

Bài 4: Hình chóp i   giác \ ABCDA1B1C1D1 có -  F AB = 8cm, A1B1

= 4cm, - bên là cm

a/ Tính

13

...

IV Diện tích hình thang - Hình bình hành - Hình thoi

Bài 1:

1/ Cho hình

 ABCD

2/ QLM chéo  hình thoi A 18 cm; 24cm Tính chu vi hình thoi

Bài...

II Diện tích hình chữ nhật - hình vng - hình tam giác:

Trang 2

Bài 1:Cho hình I ...

-  F\

2/

Bài : Cho hai hình vng có -  a chung ;[ 1 -   ;[ hình

vng

III Diện tích tam giác:

Bài 1:

1/ Cho hình

Ngày đăng: 31/03/2021, 19:48

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w