Phát biểu định lý quan hệ giữa góc và cạnh đối diện trong một tam giác.. Phát biểu các định lý quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu.[r]
Trang 1đề cương ôn tập toán 7 - học kì ii
(năm học 2005 - 2006)
A Phần đại số
1 Thế nào là số hữu tỉ ? Cho ví dụ.
Khi viết dạng số thập phân, số hữu tỉ !"# biểu diễn thế nào ? Cho ví dụ.
Thế nào là số vô tỉ ? Cho ví dụ Số thực là gì ? Nêu mối quan hệ giữa tập Q, tập I, tập R.
2 Giá trị tuyệt đối của số hữu tỉ x !"# xác định thế nào ?
3 Tỉ lệ thức là gì ? Phát biểu tính chất cơ bản của tỉ lệ thức Viết công thức thể hiện tính chất dãy tỉ số bằng nhau.
4 Khi nào hai đại " y và x tỉ lệ thuận với nhau ? Cho ví dụ.
Khi nào hai đại " y và x tỉ lệ nghịch với nhau ? Cho ví dụ.
5 Đồ thị của hàm số y = ax (a 0) có dạng thế nào ?
6 Muốn thu thập các số liệu về một vấn đề cần biết thì em phải làm những việc gì và trình bày kết quả thu
!"# theo mẫu ở những bảng nào ?
7 Tần số của một giá trị là gì ? Thế nào là mốt của dấu hiệu Nêu cách tính số trung bình cộng của dấu hiệu.
8 Thế nào là đơn thức ? Cho ví dụ.
Thế nào là đa thức ? Cho ví dụ Thế nào là hai đơn thức đồng dạng ? Cho ví dụ.
9 Nêu quy tắc cộng, trừ hai đơn thức đồng dạng.
10 Khi nào số a !"# gọi là nghiệm của đa thức P(x).
II Bài tập: Làm bài tập "Ôn cuối năm" trang 88 - SGK
Bài 1:
1
2
1 21
16 23
4 21
5 23
27
A
1 3
1 2 3
1 3 3
1 6
2 3
7
5 : 3
1 13 7
5 : 3
1 23
C
3
10 7
6 2
3
5
2 3
1
x
2
1 5
6 7
3 12
x x
2
1 2 5 , 0
x
3
8 2
5
9
5
1
x x 3x 7 0
Bài 2:
1 "#$%&'()ã *+, -./'012'.345
2 6(-"#&'&78 2'37./901 :;'8<=&'&7> ?1
5 3 4
z y x
5@A5-A55 @9A59AB9 @9A-9A59 CD,E), 3
Trang 2Bµi 3:
1 G?F*H'1) ,I"# 1'0J K=-9L" 8( DL,
M) > "#""&·'* N01(O"01$P01(I P (*Q
Tæng: 30
- V#L" %0J KD 1'1
- V#L" 0J KW 1'8UI 1
- > "#( N= $ 1'0J K1
V#8 D ="# 1'0J K=-9L" 1
2 V#Z ·(*[D01(· [:\8( /9 ]#^ =,% *?P8(
) "
GNU*H'1`
·(*[D01( ?F`C#
M d *e*(P f ) > "# 8I
Bµi 4:
1 gQL *hi.-/'3/'/2-'-2-'/3//'3/-'-*?
i./'2'/2-'- Mi./'2'/3-'
-6i./'3'/2-'- GCD,E),
2 6(*h
./3-'3'/2/3-'24 M.3//2'2/'/
352/'3-6.-/3@'2X'/3B2@'25 G.3/25'3-'/2@3X'3R
Trang 301'.34 2
1
x
Trang 4Bài 5:
1 6(h 3 2 5AM.42'A AG.35/'7
-3 5
3
xy y
x
A
a
y x C
2 2
1
6(&'&71 A1 "#
Mh 1(,j 1*Z h
2 6(k.5-3X/22XA.X-3X/2/25A./-2@24
A9
2 1
;=,A =,
Bài 6:
1 6(-*Z h./@'-AM.@'-A6./@'
-\$ *Z h 1(*e P 0Z
&1 A&'1
1 A&&'1
1 A&&'1
2 6(*hk.//34352/3/3/A.//3-3243-3/
Bài 7:6(1"#
1
2 )
(
x
x x f
*
4
1 ) (x
f
n*k8< 'I
! *ko4
B- Phần hình học
I Lý thuyết:
1 Thế nào là hai !] thẳng song song? Phát biểu định lý của hai !] thẳng song song.
2 Nêu các dấu hiệu nhận biết hai !] thẳng song song.
3 Phát biểu tiên đề Ơclít về !] thẳng song song.
4 Phát biểu định lý về tổng ba góc của một tam giác, tính chất góc ngoài của tam giác.
5 Phát biểu định lý quan hệ giữa ba cạnh của một tam giác, bất đẳng thức tam giác.
6 Phát biểu định lý quan hệ giữa góc và cạnh đối diện trong một tam giác.
7 Phát biểu các định lý quan hệ giữa !] vuông góc và !] xiên, !] xiên và hình chiếu.
8 Phát biểu các 5] hợp bằng nhau của hai tam giác, của hai tam giác vuông.
9 Nêu định nghĩa, tính chất các !] đồng quy của tam giác.
10 Nêu định nghĩa, tính chất, dấu hiệu nhận biết tam giác cân, tam giác đều, tam giác vuông, tam giác vuông cân.
Trang 5II Bµi tËp:
Bµi 1: S Np_q01(j8# *+1*Q
\ W *jD*
\D0j D L @59*0j H
i (1=(st F Z 8( ,j ,+0F
8( H &P *'1P F N
!\P 0j => ?1/01 *D 1P '+ 13 5
k%0F-/410j
Bµi 2:
4 i(*?s (=
/ 8( D&* =
*?s 8 8
- S*+P
@ 8L H=
6*+*%
6O8 ' 1 *(P !(%"#4v/ a18H*
6h MG.6w _*< P =Gw 6h GwvvM6
Bµi 3:
(*=*?s f M01C\6h 8
CM.C\ CMr.C\6 Cr601M\vvr6 6yMoC6yCM
Bµi 4: 6(M60j P:z*?s ({8I P M6N'*G"((MG.M
:zGr6r66h 8 r.{
6h 8 M26xM62{
Bµi 5:6(M6iLw&|!(h18 *=P M&68I *#=|M
N'*}"((}|.M|8I *#=w6N'*~"((~w.6w
6h }.~
6h *}&&~f 1
6h M~vv6016}vv6
iLg1(*=*?s f }601~M6h 8 0}~g
> 0M6
! M*?s f g&M}&6~*e E'
Bµi 6:6(M6H PM6xMS?s 8 8=6J*?s f M6PC8I *#=CN'*\"((\.MC
6h 8 C6.M6
6h 8 6C.6\
... gQL *hi. - /''3/''/2-< /small>''-< /small>2 - ''/3//''3/-< /small>''-< /small>*?i./''2''/2-< /small>''-< /small>...%&''()ã *+, - ./''012''.345
2 6( - "#&''& 7 8 2''3 7 ./901 :;''8<=&''& 7 > ?1
5...
i./''2''/2-< /small>''-< /small> Mi./''2''/3-< /small>''
-6 i./''3''/2-< /small>''-< /small>