1. Trang chủ
  2. » Cao đẳng - Đại học

Thuết ké bài dạy tăng tiết Đại số 8

20 5 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 1,89 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Thuết ké bài dạy Tăng tiết đại số 8 thªm, bít h¹ng tö: Với các đa thức đã cho không có chứa thừa số chung, không có dạng của một hằng đẳng thức cũng không thể nhóm số hạng.. Do vậy ta ph[r]

Trang 1

Tuần -

A-Yêu cầu:

HS hệ thống các kiến thức về phép nhân đa thức

Nắm và vận dụng thành thaọ các quy tắc của phép nhân đa thức

Giải được các bài tập trong SGK

B-Nội dung

Hoạt động 1 Giải đáp thắc mắc của HS (7’)

GV: Trong bài nhân đơn thức với đa

thức có chỗ nào ta còn chưa rõ?

HS

Hoạt động 2 Hướng dẫn HS giải bài tập.

GV yêu cầu HS nhắc lại các quy tắc

về phép nhân đa thức đã hoc?

Hướng dẫn giải bài tập SGK

Bài1 c)

GV nhắc HS chú ý khi thực hiện phép

nhân ở thừa số thứ hai có dấu trừ HS

hay mắc lỗi này

Bài 2 a)

Thực hiện phép nhân, rút gọn rồi tính

giá trị của biểu thức:

x(x-y)+y(x-y) với x=-6; y=8

Bài này có mấy yêu cầu? Đó là những

yêu cầu nào?

GV: Hãy thực hiện phép nhân trên

Cho HS làm vào vở nháp Một HS khá

lên bảng trình bày Sau đó cả lớp đối

chiếu bổ sung

Bài b) x(x2-y)-x2(x+y)+y(x2-x) với

x=1/2;y=-100

GV hướng dẫn HS cách thực hiện

phép tính:

- Khai triển biểu thức bằng cách

nhân đơn thức với đa thức

- Rút gọn các hạng tử đồng dạng

Bài 10 a thực hiện phép tính:

a) (x2-2x+3)( x-5)

2

1

b) (x2-2xy+y2)(x-y)

HS nhắc lại GV bổ sung

HS: Bài này có ba yêu cầu:

+) Thực hiện phép nhân +) Rút gọn

+) Tính giá trị của biểu thức

x(x-y)+y(x-y)=x2-xy+xy-y2=x2-y2 Thay giá trị vào ta có: x=-6; y=8

=> (-6)2-82=36-64=-28

HS làm vào vở nháp, đối chiếu kết quả lẫn nhau

Trang 2

GV: Hai bài toán trên ta thực hiện

phép tính gì? Nêu cách làm?

Hai HS lên bảng thực hiện hai bài

Cả lớp cùng làm

Sau khoảng 7’ GV cho HS đới chiếu

kết quả và ghi vào vở ài tập

Bài 11 chứng minh rằng giá trị biểu

thức sau không phụ thuộc vào giá trị

của biến:

(x-5)(2x+3)-2x(x-3)+x+7

GV: thế nào là giá trị biểu thức không

phụ thuộc vào giá trị của biến?

HS không trả lời được GV giải thích:

Khi biến đổi, thu gọn các hạng tử

đồng dạng, kết quả cuối cùng được

một hằng số, có nghĩa là không có

mặt của biến gọi là giá trị của biểu

thức không phụ thuộc vào giá trị của

biến Hay nói cách khác; khi thay bất

cứ giá trị nào của biến thì giá trị của

biểu thức uôn luôn không đổi”

GV cho HS giải

Một HS lên bảng thực hiện

Bài 13: Tìm x biết:

(12x-5)(4x-1)+(3x-7)(1-16x)=81

GV: Bài này ta thực hiện như thế nào?

-Khai triển vế trái

-Thu gọn

-Được dạng ax=b

- x=b/a

- HS cả lớp cùng thực hiện

Bài 14: Tìm ba số tự nhiên chẵn liên

tiép, biết tích của hai số sau lớn hơn

tích của hai số đầu là 192

GV: Nêu công thức của ba số tự nhiên

chẵn liên tiếp?

GV: Viết tích hai số đầu?

Viết tích hai số sau?

GV: Theo bài ra ta có gì?

HS:

-Nhân đa thức vớ đa thức

-Nhân theo quy tắc “ lấy mỗi hạng

tử của đa thức này nhân với từng hạng tử của đa thức kia và cộng các tích tìm được với nhau”

HS chú ý nghe và giải

(x-5)(2x+3)-2x(x-3)+x+7

=2x2-7x-15-2x2+6x+x+7

=-8

Kết luận:

(12x-5)(4x-1)+(3x-7)(1-16x)=81

48x2-12x-20x+5+3x-48x2

- 7+112x=81 81x=81

 x=1

2x; 2x+2; 2x+4 2x(2x+2)

(2x+2)(2x+4)

ta có:

(2x+2)(2x+4)-2x(2x+2)=192 4x2+8x+4x+8-4x2-4x=192

 8x=192-8

 8x=184

 x=23

ba số tự nhiên chẵn liên tiếp

 là:46;48;50 Hoạt động 3

Hướng dẫn về nhà

 Làm bài tập 15

 Viết dưới dạng luỹ thừa của cùng cơ số

Trang 3

Tuần

Những hằng đẳng thức đáng nhớ

A-Mục tiêu.

- Ôn tập các hằng đẳng thức đã học: Bình phương một tổng; bình phương một hiệu; hiệu hai bình phương; lập phương một tổng; lập phương một hiệu

- Vận dụng các hằng đẳng thức đã học để giải những bài tập trong SGK

B-Chuẩn bị của GV và HS

SGK; Vở nháp; bút màu

C-Tiến trình dạy –học

Hoạt động của GV Hoạt động của HS

Hoạt động 1 Lí thuyết

GV gọi HS lên viết 7 hằng đẳng thức

đáng nhớ vào vở.1HS : lên bảng viết , cả lớp cùng viết Hoạt động 2 Hướng dẫn giải bài tập

Giải các bài tập sau

Bài tập 1

Viết các biểu thức sau dưới dạng bình

phương của một tổng hoặc một hiệu:

25a2+4b2-20ab

GV hướng dẫn:

25a2=( )2

4b2=( )2

20ab=2( )( )

Bài tập 2:

Chứng minh rằng:

(10a+5)2=100a.(a+1)+25

GV hướng dẫn:

Phương pháp giải loại toán này là gì?

- Biến đổi vế này theo vế kia

Cụ thể: Biến đổi vế trái ta có gì ?

Hãy nêu cách tính nhẩm bình phương

một số tự nhiên tận cùng bằng chữ số

5?

Hãy nhân nhẩm: 352; 752

Bài tập 3:

Tìm cách khôi phục lại những hằng

đẳng thức đã bị nhoè?

a) x2+6xy+ =( +3y)2

HS làm bài dưới sự hướng dẫn của GV

Một HS lên bảng trình bày

(10a+5)2=(10a)2+2.10a.5+52

=100a2+100a+25

=100a(a+1)+25 vậy vế trái bằng vế phải

(10a+5)2=100a.(a+1)+25

HS: Lấy chữ số hàng chục nhân với

100, nhân với chữ số hàng chục cộng

1, được bao nhiêu cộng với 25

352=100.3.(3+1)+25=1200+25=1225

- Dạng của bài toán là bình phương một tổng

Trang 4

? : Hãy nhìn dạng của bài toán?

thuộc loại công thức nào?

?: Xác định biểu thức thứ nhất? Biểu

thức thứ hai?

b) Hãy nhìn dạng của bài toán?

- 10xy + 25y2= ( - )2

25y 2= ( )2

10xy = 2( ).( )

?: Qua phân tích ta thấy xuất hiện

điều gì?

Hãy cho bài tóan tương tự

Bài tập 4.: Chứng minh rằng:

a) (a+b)2=(a-b)2+4ab

b) (a-b)2=(a+b)2-4ab

Bài tập 5: Tính:

a) (a+b+c)2

GV hướng dẫn:

Nhóm a+b thành một biểu thức, sử

dụng thêm dấu ngoặc, ta có điều gì?

(a+b+c)2= [(a+b)+c]2 =

? tương tự hãy giải bài b và c

-Hạng tử thứ nhất: x -Hạng tử thứ hai là 3y

Ta có:a) x2+6xy+ =( +3y)2

⇒ x2+6xy+9y 2 = (x +3y)2

HS: Nhận xét: Bài toán có dạng bình phương một hiệu

25y2=(5y)2

⇒ Hạng tử thứ hai là 5y

10xy=2.5y.x

⇒ Hạng tử thứ nhất là: x

⇒ Ta có: (x-5y)2 = x2-10xy+25y2 Hay:

x2-10xy+25y2= (x-5y)2 HS:

HS1: Giải bài a HS2: giải bài b

HS cả lớp làm vào vở nháp

(a+b+c)2=[(a+b)+c]2=

HS lên bảng trình bày

Hoạt động 3 Hướng dẫn về nhà

- Học kĩ ghi nhớ các hằng đẳng thức đã học

- Xem các bài tập đã giải

- Bài1 Tìm GTNN của A = x - x + 12

B = 4x - 4x2

2 Tìm GTLN của C = -x - 4x - 2 (= -(x+2) + 2 2 với mọi x)2 2 

Trang 5

Tuần

Bằng phương pháp đặt nhân tử chung

A- Mục tiêu

- Củng cố kiến thức phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung

- Hướng dẫn HS giải các bài tập từ 39đến42 tr 19 SGK

B- Chuẩn bị của GV và HS

- SGK- Vở bài tập- Vở nháp

C- Tiến trình dạy -học

Hoạt động của GV Hoạt động của HS

Hoạt động 1 Lí thuyết

GV: Phân tích đa thức thành nhân tử

bằng phương pháp đặt nhân tử chung

là làm gì ?

HS: nêu

Hoạt động 2

Hướng dẫn giải các bài tập

Bài 39-Phân tích các đa thức sau

thành nhân tử.

a) 3x-6y

GV: Hướng dẫn

Xét hệ số 3;6 có ƯCLN=?

?:Phần biến có gì chung?

đặt các ước chung lớn nhất ra ngoài

dấu ngoặc

?: Đa thức trong dấu ngoặc được

tính như thế nào?

lấy từng hạng tử của đa thức đã cho

chia cho nhân tử chung

b) x2+5x3+x2y

5

2

GV: Hệ số có ƯCLN=?

?: Phần biến có gì chung?( Tìm

ƯCLN của biến?)

c) 14x2y-21xy2+28x2y2

Ư(14;21‘;28)=?

Ư(x2y;xy2;x2y2)=?

d) x(y-1)- y(y-1)

5

2

5 2

HS:

3x-6y

Ư(3;6)={3}

⇒ 3x-6y = 3(x-2y)

b) x2+5x3+x2y 5

2

Ư( ;5;1)=1; x2 chung

5 2

⇒ x2+5x3+x2y = x2( +5x+y) 5

2

5

2

HS:

Ư(14;21‘;28)=7 Ư(x2y;xy2;x2y2)=xy 14x2y-21xy2+28x2y2 =7xy(2x-3y+4xy)

Trang 6

tương tự như bài c, hãy tìm nhân tử

chung của đa thức trên?

e) 10x(x-y)-8y(y-x)

Ư(10;8)=?

GV?: Nhận xét phần biến?

GV hướng dẫn:

hạng tử thứ nhất có x-y; hạng tử thứ

hai có y-x, là hai biểu thức đối nhau,

nếu đổi dấu biểu thức thứ hai thì ta

có hai biểu thức bằng nhau=>nhân

tử chung

Bài 40 Tính giá trị biểu thức.

a)15.91,5+150.0,85

GV hướng dẫn

150.0,85=15.10.0,85=15.8,5

b) x(x-1)-y(1-x) tại x=2001; y=1999

GV hướng dẫn:

Đặt nhân tử chung rồi tính giá trị

cho nhanh

Đổi dấu hạng tử thứ hai, ta có nhân

tử chung

Bài 41 tìm x biết:

a) 5x(x-2000)-x+2000=0

GV hướng dẫn: nhóm x+2000 thành

một nhóm, chú ý dấu trừ đằng trước

phải đổi dáu các hạng tử bên trong

GV: Chú ý A.B=0A=0 hoặc B=0

b) x3-13x=0

Đặt x ra thừa số ta có x(x2-13)=0

x2-13= 0

⇒ x2=13

⇒ x= 13

bài 42 CMR 55n+1-55n chia hết cho

54 (n là số tự nhiên)

GV hướng dẫn: 55n+1=55n.55( nhân

hai luỹ thừa cùng cơ số)

d) x(y-1)- y(y-1) 5

2

5 2

= (y-1)(x-y)

5

2

e)10x(x-y)-8y(y-x)

=10x(x-y)+8y(x-y)

=2(x-y)(5x+4y)

a)15.91,5+150.0,85

=15.91,5+15.8,5=15(91,5+8,5)=15.100

=1500 b) x(x-1)-y(1-x) =x(x-1)+y(x-1)

=(x-1)(x+y) thay vào ta có:

(2001+1999)(2001-1)

=4000.2000=8000 000

a)5x(x-2000)-x+2000=0

5x(x-2000)-(x-2000)=0

 (x-2000)(5x-1)=0

5 1

2000 0

1 5

0 2000

x

x x

x

bài 42 CMR 55n+1-55n chia hết cho 54 (n là số tự nhiên)

ta có: 55n+1-55n =55n.55-55n=55n(55-1)

=55n.54; mà 55n.54 54=>55 n+1-55n 54 ( với mọi n N)

Hoạt động 3

Hướng dẫn về nhà

- Xem kĩ lí thuyết bài phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung

- Đọc trước bài “phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức”

- Làm các bài tập trong SBT phần “ phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung”

Trang 7

Tuần

Bằng phương pháp dùng hằng đẳng thức

A- Mục tiêu

A- - Củng cố 7 hằng dẳng thức đáng nhớ cho HS

B- - Vận dụng 7 hằng đẳng thức để phân tích đa thức thành nhân tử

B- Chuẩn bị của GV và HS

C- - SGK- Vở nháp_- Vở bài tập

C- Tiến trình dạy –học

Hoạt động của GV Hoạt động của HS

Hoạt động 1

Lí thyết

Cho HS ôn lại 7 hằng đẳng thức - HS nhớ và ghi lại 7 hằng đẳng thức đáng nhớ

Hoạt động 2

Hướng dẫn giải bài tập

Bài 1 Phân tích đa thức sau thành

nhân tử:

a) x2+6x+9

9=32; 6x=2.3x ⇒ x2+6x+9=?

b) 10x-25-x2

? : Đặt dấu (-) ra ngoài ta có gì?

Tương tự phân tích như bài trên ta có

gì?

c) 8x3

-8

1

?: x2-64y2

25

1

Tương tự như bài c ta có =? 64=

25

1

Bình phương?

⇒ đưa về hằng đẳng thức nào?

Bài 2 Phân tích đa thức sau thành

nhân tử;

a) x3+ tương tự như bài 43 c

27

1

b) (a+b)3-(a-b)3 sử dụng hằng

đẳng thức hiệu hai lập

phương’ xem (a+b)=A;

(a-b)=B

c) (a+b)3+(a-b)3 sử dụng hằng

HS:

a) x2+6x+9 = x2+2.3x+32 = (x+3)2

b) 10x-25-x2 = -(-10x+25+x2) =-(x2-10x+25) =-(x-5)2

c) 8x3- = (2x)3

-8

2

1

=(2x- )[(2x)2+2x +( )2]

2

1

2

1 2 1

=(2x- )(4x2+x+ )

2

1

4 1

d) x2-64y2= x2-82y2 25

5

1

5

1 8 5

1 8

5

2

Trang 8

đẳng thức tổng hai lập

phương

d) 8x3+12x2y+6xy2+y3

GV hướng dẫn: 8=23;

12x2y=3.(2x)2.y;6xy2=3.2x.y2suy ra

được gì?

e) –x3+9x2-27x+27;

GV hướng dẫn: Đổi chỗ các hạng tử

trước ra sau để xuất hiện hằng đửng

thức

Bài 3 tìm x biết:

a) 2 - 25x 2 = 0

GV hướng dẫn: 2= 2;

2

25x2=(5x)2;

Sử dụng hằng đửng thức đưa vế trái

về tích 2 đa thức bằng 0 ;(A.B)=0=>

A=0 hoặc B=0, rồi tìm x

b) x2-x+ =0

4

1

GV hướng dẫn: phân tích vế trái

thành hằng đẳng thức( A-B)2; ta có:

x2-x+ =x2-2.x +( )2=( + )2

4

1

2

1 2

1

GV cho một HS lên bảng trình bày

cho cả lớp xem

Bài 4 Tính nhanh;

a) 732-272 vận dụng HĐT hiệu

hai bình phương

b) và c tương tự

d) 8x3+12x2y+6xy2+y3

=(2x)3+3.(2x)2.y+3.2x.y2+y3=(2x+y)3

a) 2-25x2=0 ⇔  2-(5x)2 = 0

2

⇔ ( 2+5x)( 2-5x)=0  2+5x=0; hoặc 2-5x=0 5x=- 2; hoặc 5x= 2 x=- ; hoặc x=

5

2

5

2

- HS lên bảng làm

HS lên bảng làm, cả lớp cùng thực hiện,nhận xét bổ sung nếu cần

Hoạt động 3

Hướng dẫn về nhà

- Làm hoàn chỉnh các bài tập 43,44,45,46.(SGK)

- Nắm vững và vận dụng tốt các HĐT vào từng bài toán

- Làm các bài tập phần phân tích đa thức thành nhân tử bằng PP dùng HĐT ở SBT

- Làm thêm bài tập sau:Phân tích đa thức thành nhan tử

a) 27x - 3 , b) (x+y) - 1, c) (ax + by) - (ay + bx)

64

d) 16 x y –25 a b4 2 2 2

Trang 9

Tiết 10

bằng phương pháp nhóm hạng tử.

A Mục tiêu:

- HS được củng cố phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử

- Vận dụng trong các bài toán tính nhanh và tìm x

B Chuẩn bị:

- GV: các bài tập

- HS: ôn tập kiến thức

C Tiến trình dạy học:

Hoạt động củaGV Hoạt động củaHS

- GV đưa bài tập1 lên bảng

Bài 1: phân tích đa thức thành nhân

tử

a) 3x – 3y + 2x2y – 2xy2

b) a4 – a3x – ay + xy

c) x3 – 3x2 – 4x + 12

d) 5x2 – 10xy + 5y2 – 20z2

? Nhận xét về đa thức a)

? Nêu cách làm

? Nêu cách làm b) c) tương tự a)

? Nhận xét đa thức d)

? Đa thức x2 – 2xy + y2 – 4z2 có

thể phân tích được không

(HS: có thể phân tích tiếp, nhóm 3

hạng tử đầu làm xuất hiện HĐT

? 4 HS lên bảng làm

? Nhận xét

- GV chốt

Cho HS lên bảng làm b)

Bài 2: Tính nhanh giá trị của mỗi đa

thức:

a) x3 – 2x2 + x – xy2 tại x =

100; y = 1

4x2 – 9 – 4xy + y2 tại x = 13; y = 3

? Nêu cách làm

? Nhận xét đa thức a)?

? Biểu thức x2 – 2x + 1 – y2 có thể

phân tích được không HĐ

HS: đa thức không có nhân tử chung HS: nhóm hạng tử thứ nhất và thứ 2, thứ 3 với thứ 4

Giải:

a) 3x – 3y + 2x2y – 2xy2

= (3x – 3y) + (2x2y – 2xy2)

= 3(x – y) + 2xy(x – y)

= (x – y) (3 + 2xy) b) a4 – a3x – ay + xy

= (a4 – a3x) – (ay – xy)

=…= (a – x) (a3 - y) c) x3 – 3x2 – 4x + 12

= (x3 – 3x2) – (4x – 12)

=…= (x – 3) (x – 2) (x + 2) HS: có nhân tử chung là 5 d) 5x2 – 10xy + 5y2 – 20z2

= 5 (x2 – 2xy + y2 – 4z2)

= 5 [(x2 – 2xy + y2) – 4z2]

=…= 5 (x – y – 2z) (x – y + 2z)

HS: thu gọn đa thức (phân tích đa thức thành nhân tử ) rồi thay các giá trị của x, y để tính

Giải:

a) Ta có: x3 – 2x2 + x – xy2

Trang 10

? Nhận xét đa thức b)?

? 2 HS lên bảng làm

? Nhận xét

- GV chố

Bài 3: Tìm x:

a) x(x – 1) – x + 1 = 0

b) 2(x + 5) – x2 – 5x = 0

c) 5x (2x – 3) = 2x – 3

? Nêu cách làm a) b)

? Nêu cách làm c)

(? Đa thức bằng 0 khi nào

(HS: khi có ít nhất 1 thừa số (nhân tử)

bằng 0

? 3 HS lên bảng làm

? nhận xét bài làm của bạn?

GV chốt lại

= x.(x2 – 2x + 1 – y2) = x.[( x2 – 2x + 1) – y2] =…

= x.(x – 1 – y).(x – 1 + y) Tại x = 100; y = 1 giá trị biểu thức là: 100.(100 – 1 – 1).(100 – 1 + 1)

= 100 98 100

= 980000 b) Ta có: 4x2 – 9 – 4xy + y2 = (4x2 – 4xy + y2) – 9 = …

= (2x – y – 3).(2x – y +3) Tại x = 13; y = 3 giá trị biểu thức là: (2.13 – 3 – 3).(2.13 – 3 + 3)

= 520

HS: đưa đa thức VT về dạng tích

Giải:

a) x(x – 1) – x + 1 = 0 x(x – 1) – (x – 1) = 0 (x – 1).(x – 1) = 0 (x – 1)2 = 0

x – 1 = 0

x = 1 b) ĐS: x = -5 hoặc x = 2 HS: đưa đẳng thức về dạng A(x) = 0 sau đó phân tích A(x) thành nhân tử c) 5x (2x – 3) = 2x – 3 5x (2x – 3) – (2x – 3) = 0 (2x – 3).(5x – 1) = 0 2x – 3 = 0 hoặc 5x – 1 = 0

x = hoặc x = 3

2

1 5

IV Củng cố

? Nêu các phương pháp phân tích đa thức thành nhân tử đã học

- Khi phân tích cần chú ý thường khi không có nhân tử chung ta mới sử dụng ngay phương pháp nhóm nhằm làm xuất hiện nhân tử chung hoặc HĐT

V Hướng dẫn về nhà:

- Tiếp tục ôn tập các phương pháp phân tích đã học

- Làm bài 31; 32; 33 (SBT-6)

Trang 11

Tuần

bằng cách phối hợp các phương pháp

I Mục tiêu.

- Nắm được nội dung cơ bản của phương pháp nhóm nhiều hạng tử và phối hợp nhiều phương pháp trong phân tích đa thức thành nhân tử

- Biết áp dung hai phương pháp: phương pháp nhóm nhiều hạng tử và phối hợp nhiều phương pháp để phân tích đa thức thành nhân tử

II Tiến trình dạy học.

Hoạt động 1 : Lý thuyết

1) Nội dung cơ bản của phương pháp

nhóm nhiều hạng tử là gì ?

2) Khi phân tích đa thức thành nhân

tử, chỉ cần dùng một phương pháp

riêng rẽ hay phải dùng phối hợp các

phương pháp đó với nhau

1) Nhóm nhiều hạng tử của đa thức một cách thích hợp để có thể áp dụng các phương pháp khác như đặt nhân

tử chung hoặc dùng hằng đẳng thức

đáng nhớ 2) Khi phân tích đa thức thành nhân

tử ta có thể dùng phối hợp nhiều phương pháp với nhau một cách hợp lí

Hoạt động 2 : Bài tập

GV cho HS theo dõi bài ra

Bài 1: Phân tích đa thức thành nhân tử

a) x2 - 2xy + 5x - 10y

b) x(2x - 3y) - 6y2 + 4xy

c) 8x3 + 4x2 - y2 - y3

- Gọi 3 HS lên bảng làm

?: Nêu các bước thực hiện ?

- Cho Hs khác nhận xét bổ sung (nếu

cần)

Bài 2 : Phân tích đa thức thành nhân

tử

a) a3 - a2b - ab2 + b3

b) ab2c3 + 64ab2

c) 27x3y - a3b3y

Cho Hs lên bảng làm, nêu các bước

thực hiện

HS quan sát suy nghĩ

Bài 1 :

a) x2 - 2xy + 5x - 10y

= (x2 - 2xy) + (5x - 10y)

= x(x - 2y) + 5(x - 2y)

= (x - 2y)(x + 5) b) x(2x - 3y) - 6y2 + 4xy

= x(2x - 3y) + (4xy - 6y2)=…

c) 8x3 + 4x2 - y2 - y3

= (8x3 - y3) + (4x2 - y2)

= …

= (2x - y)( 4x2 + 2xy + y2 + 2x + y)

Bài 2

a) a3 - a2b - ab2 + b3

= ( a3 - a2b) - (ab2 - b3)

=

= (a - b)2(a + b) b) ab2c3 + 64ab2

= ab2(c3 + 64)

Ngày đăng: 30/03/2021, 01:49

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w