1. Trang chủ
  2. » Luận Văn - Báo Cáo

Design and modeling of an improved bridge type compliant mechanism with its application for hydraulic piezo valves

9 4 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 3,43 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Based on the unique structure of the proposed bridge-type compliant mechanism with double output ports generating bi-motions, a new type of piezoelectrically actuatedtwo-stage four-wayhy

Trang 1

j o u r n a l ho me p a g e :w w w e l s e v i e r c o m / l o c a t e / s n a

Mingxiang Linga,∗, Jiulong Wanga, Mengxiang Wua, Lei Caoa, Bo Fub

a Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang, 621900, China

b School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China

a r t i c l e i n f o

Article history:

Received 3 February 2021

Received in revised form 27 February 2021

Accepted 10 March 2021

Available online 15 March 2021

Keywords:

Compliant mechanisms

Piezoelectric actuator

Mechanical displacement amplifier

Flow control valve

Dynamic stiffness matrix

Smart materials

a b s t r a c t

1 Introduction

Advancesinsmartmaterialshaveresultedinarenewed

inter-estindevelopingactuatorswithhighcontrolprecision,compact

structureandlowcostforuseinmicro/nano-manipulations,

ultra-precisionmachiningandmanyotherengineeringfields[1–3].The

main goal ismulti-fold toobtainhigh-frequency response,

suf-ficient stroke,multipledegrees offreedom, fineresolution,and

highreliability.Withthisinmind,manyresearchershavemade

significant strides in developing all kinds of actuators, such as

shape memory alloys, piezoelectric actuators, magnetostrictive

transducers, voice coil motors,and soforth [4,5 Among these

types,piezoelectricallyactuatedcompliantmechanismshavebeen

preferred for someprecision applications due to thefollowing

advantages:

(a)High energy density and simplicity in structure of

piezoelectric actuators with large driving force

(Piezo-∗ Corresponding author.

E-mail address: ling mx@163.com (M Ling).

electric stacks), nano-scale resolution and fast dynamic response

(b)Thebenefitsofmonolithicstructureofflexure-based compli-antmechanismswithoutwear,friction,backlashandreduced requirementofassemblyprocess[6

Strokesofcommerciallyavailablepiezo-stacksareverysmall withthedeformationofabout0.1%to0.15%oftheirlength There-fore, flexure-based amplifying mechanisms are often designed fortheapplicationwithstrokesof severalhundredsof microns andevenmillimeterranges[7 Except forthefunctionalitiesof mechanical amplifyingand motionguiding,another purposeof usingflexure-basedcompliantmechanismsforpiezoelectric appli-cationsisthefactthatpiezo-stackscansupportlittletensileorshear forceloads,andcompliantmechanismscanprovidepreloadand restoringforcethroughelasticdeformation,renderingpiezo-stacks suitableforuseindynamicapplications

Atpresent,leveraged[8–11], bridge-type[12–15]and Scott-Russell [16,17] compliant mechanisms are frequently used as mechanical displacement amplifiers Somederivative or newly developed amplifying mechanisms have also been proposed [18–23].Althoughleveragedcompliantmechanismscanprovide https://doi.org/10.1016/j.sna.2021.112687

0924-4247/© 2021 Elsevier B.V All rights reserved.

Trang 2

a desirable displacementamplification ratio, theyrequirelarge

spaces.Bridge-typecompliantmechanismswereoriginatedfrom

theearlyMoonie-type,Cymbal-typeandRainbow-type

amplify-ingmechanisms[24]andarewidelyusedinprecisionengineering

withasatisfyingdisplacementamplificationratioinacompactsize

Moreover,thestructuralsymmetryinthebridge-typeamplifying

mechanismspreventsshearingloadsbeingappliedtopiezo-stacks

One disadvantage of some previous bridge-type compliant

mechanisms,however,liesintheinertialmotionofinternal

actu-ators(e.g.piezo-stacks),limitingthesystem’sdynamicbandwidth

[12–15].Tothisend,weintroduceanimprovedbridge-type

com-pliant mechanism with two outputports in the current study,

whichcangeneratehomodromousbi-motionsinthesame

direc-tionwithonlyasinglegroupofpiezo-stacks.Withthisimproved

design,theinertialmotionofpiezo-stacksisavoided,andthe

fre-quencybandwidthisconsequentlyenhanced

Based on the unique structure of the proposed bridge-type

compliant mechanism with double output ports generating

bi-motions, a new type of piezoelectrically actuatedtwo-stage

four-wayhydraulicservovalveisdesigned,fabricatedandtested

Incomparisontopreviousfour-wayservovalvesactuatedbytwo

orfourpairsofpiezo-stacks[25,26],onlyonegroupofpiezo-stacks

is requiredin thecurrentdesign.Thecontrollercomplexityand

costarereducedtoacertainextent.Inaddition,theissueofoil

contamination and inner leakage in traditional nozzle-flapper

hydraulicservovalvesiseffectivelyovercome,allowingloweroil

cleaninglevelwithhigherreliability

Thispaperprogressesasfollows:Section2describesthe

con-figurationoftheimprovedbridge-typecompliantmechanism.The

kinetostatic anddynamicanalysesbyusingatwo-portdynamic

stiffnessmodelareimplementedinSection3,followedbydesign

andexperimentaltestingforanewtypeofpiezoelectrictwo-stage

servovalveinSection4.Finally,concludingremarksareprovided

inSection5

2 Design of the improved compliant mechanism

Fig 1 compares the schematic configuration of three types

ofpiezoelectricallyactuatedbridge-typecompliantmechanisms

Thesebridge-typecompliantmechanismsconsistofflexurehinges

and rigidlinks Micromotionofpiezo-stacksisamplifiedbased

onthetriangleandflextensionalprinciples.Theleaf-springflexure hingeisshowninFig.1asanexamplebutotherflexurehinges,such

ascircular,corner-filleted,ellipticandhyperbolicprofiles[27,28], arealsocommonlyappliedfordesigning bridge-typecompliant mechanisms

In thetraditional bridge-type compliantmechanisms shown

inFig.1(a),oneoutputportisfixedtoblockwhileanotherport

isservedastheoutputdisplacementport Insucha traditional configuration,exceptforthelongitudinalexpansiondeformation, piezo-stackshaveanextratransverseinertialmovementwithahalf magnitudeofoutputdisplacement.Thisinertialmovement lim-itsthesystem’sdynamicbandwidth Thebridge-typecompliant mechanismshowninFig.1(b)waspresentedbyTian,etal.[29]for useindesigningamicro-gripperbyfurthercombiningaleveraged amplifyingmechanism,whichisnotspecifiedhere.Oneinputport

ofthistypeofmechanismisfixedtoblockwithtwooutputports freetogeneratebi-motionsinanoppositedirection.Ascanbeseen fromthedeformationnephograminFig.1(b),theinertial move-mentofpiezo-stacksiseliminatedbuttheoutputportsstillhave parasiticmotionsalongthelongitudinaldirection

Animprovedbridge-type compliant mechanism isproposed

inthecurrentpapershowninFig.1(c).Theproposedimproved bridge-typecompliantmechanismconsistsofleaf-springhinges, rigidlinks aswellasguiding flexible beamsfixedtotheblock Micro-displacementofpiezoelectricstacksismechanically ampli-fiedwithoutinertial movementnorparasiticmotionby adding fourpairsofguidingflexiblebeams.Inaddition,homodromous bi-motionsinthesamedirectioncanbegeneratedbyre-organizing therelativepositionofflexurehingesincomparisontothe configu-rationinFig.1(a)andFig.1(b),whichwillbeutilizedtodriveanew typeofflowcontrolvalveinthecurrentstudy.Sincethethickness

ofguidingflexiblebeamsismuchsmallerthanthatofotherparts, theoutputdisplacementoftheimprovedbridge-typecompliant mechanismwillnotbeheavilyattenuated

3 Kinetostatic and dynamic analyses

3.1 Two-portdynamicstiffnessmodeling

Inordertosizethegeometricparameters,thetwo-portdynamic stiffness model of theimprovedbridge-type compliant

mecha-Fig 1. Comparison of bridge-type compliant amplifying mechanisms (a) Traditional bridge-type compliant mechanism with one output port (b) Derivative bridge-type compliant mechanism with two output ports generating reversed bi-motions for use in designing a micro-gripper in Ref [ 29 ] (c) Improved bridge-type compliant mechanism with double output ports generating homodromous bi-motions for designing a flow control piezo-servovalve in the current paper.

Trang 3

Fig 2.Geometric parameters and discretization of the presented bridge-type

com-pliant mechanism.

Fig 3. Definition of nodal forces and nodal displacements of the ith flexible beam

element with respect to the reference coordinate frame.

nismisformulated,andthegeometricparametersaredefinedin

Fig.2.Themechanismisdiscretizedintoflexurehinges,rigidlinks

and lumpedmass(outputports)withonlykineticenergy

Flex-urehingesandrigidlinksareregardedasflexiblebeamsandare

denotedseriallyfromelements(1)to(20)connectingwithnodes

fromnumber1tonumber16.Alltheclampednodesarenumbered

as0.Theinputforceactuatedbypiezo-stacksisdenotedasfp

AsshowninFig.3,eachflexiblebeamhassixdegreesof

free-dom:axialdisplacementsujanduk,transversedeflectionswjand

wk,rotationsϕjandϕkatthetwonodesjandk.The

frequency-dependentnodalforcesandnodaldisplacementsoftheithflexible

beamcanbecorrelatedbytheirdynamicstiffnessmatrixDi(ω)in

thereferenceframeo-xy[30,31]:



Fi,j(ω)

Fi,k(ω)



=Di(ω)·



xi,j

xi,k



=



ki,1 ki,2

ki,3 ki,4



·



xi,j

xi,k



(1)

where Fi,j(ω)=[Nj; Qj; Mj], Fi,k(ω)=[Nk; Qk; Mk] and xi,j=[uj; wj;

ϕj],xi,k=[uk;wk;ϕk]arethetwonodalforcesandnodal

displace-mentsoftheithflexiblebeaminthereferencecoordinateframe.ω

Fig 4.Condensed configuration of the improved bridge-type compliant mecha-nism.

isthecircularfrequency.Di(ω)=RTi ·De(ω)·Ri,hereDe(ω)isthe dynamicstiffnessmatrixofflexiblebeamsintheirlocalcoordinate frameo-xiyi[30]:

De(ω)=K0−ω2M1−ω4M2−ω6M3 (2) whereK0,M1,M2,M3arethestaticstiffnessmatrixandthefirst three-ordermassmatricesofflexiblebeamelements,respectively, andthedetailedexpressionsarelistedinAppendix

CoordinatetransformationmatrixRiisdeterminedbythe ori-entationioftheithflexiblebeamwithrespecttothereference frameo-xy,asshowninFig.3:

Ri=

−sini cosi 0 0 0 0

0 0 0 cosi sini 0

0 0 0 −sini cosi 0

(3)

Thevalueofeachorientationifortheflexiblebeamelements

inFig.2issummarizedinTable1.Sincethetwonodesoftherigid linksarenotalignedatthecentralaxis,theyareequivalenttobe flexiblebeamswithanorientation=actan(H/l4),asshowninFig.2

Ontheotherhand,thetransfermatrixoftheithflexiblebeam element,whichalsodescribestherelationshipbetweennodalforce andnodaldisplacementofflexiblebeams,canbeeasilyderived basedonEq.(1)as:



xi,k

Fi,k



=T



xi,j

Fi,j



=



ti,1 ti,2

ti,3 ti,4



·



xi,j

Fi,j



=



−k−1i,2·ki,1 k−1i,2

ki,3−ki,4·k−1i,2·ki,1 ki,4·k−1i,2



·



xi,j

Fi,j

Basedontheimprovedtransfermatrixmethodin[31],thetotal transfermatricesoffourbranchlimbsfromtheinputportstothe outputportsinFig.2canbedirectlyderivedas:

T1=T(ST4)·(ST3)·(SQ2T1)

T2=T10·(ST9)·(ST8)·(SQ7T6)

T3=T15·(ST14)·(ST13)·(SQ12T11)

T4=T20·(ST19)·(ST18)·(SQ17T16)

(5)

Trang 4

Table 1

The value of each orientation  i for the flexible beam elements (Unit: Degree).

In Eq (5),the specificvalues of Qi (i =2, 7, 12, 17)can be

expressedas[31]:

Q2=



I3 O3

k2,4 I3



,Q12=



I3 O3

k12,4 I3



Q7=



I3 O3

k7,4 I3



,Q17=



I3 O3

k17,4 I3

whereki,4(i=2,7,12,17)arethelastthreerowsandthreecolumns

inDi(ω).I3andO3arerespectivelytheunitandzeromatriceswith

thedimensionof3×3

Based ontheabovecondensation, theimprovedbridge-type

compliantmechanism inFig.2 canbefurtherequivalentasthe

two-portmechanicalmodel,asshowninFig.4.Theequivalent

rela-tionshipbetweenthenodalforceandnodaldisplacementofthe

condensedlimbscanbeobtainedagainbasedonEq.(5):



Fi,j

Fi,k



=Di(ω)·



xi,j

xi,k



=



ki,1 ki,2

ki,3 ki,4



·



xi,j

xi,k



=



−t−1

i,2·ti,1 t−1i,2

ti,3−ti,4·t−1i,2·ti,1 ti,4·t−1i,2



·



xi,j

xi,k

wherei=1,2,3,4isthenumberoffourcondensedlimbs.ti,1,ti,2,

ti,3andti,4 aretheblocksub-matricesofthecondensedtransfer matrixTiinEq.(5)

TakingthefourportnodesinFig.4asthestudyobjects,forces imposedoneachnodearethesummationoftheinversenodalforce

ofitsconnectedequivalentlimbs,theinertialforceofthenodeitself

ifitisalumpedmassandexternalforcesaccordingtod’Alembert’s principle.Therefore,thefollowingforceequilibriumequationsets canbeestablished:

fi1=F1,j+F4,j

fi2=F2,j+F3,j

fo1=F1,k+F2,k+M·xo1

fo2=F3,k+F4,k+M·xo2

(8)

inwhich, fo1 and fo2 are dummyforcesassumed attheoutput ports.ThedynamicstiffnessmatrixMoftheoutputportscanbe calculatedasfollows[30,31]:

M(ω)=

wheremisthemassoftheoutputports

Fig 5.Comparison of the static and dynamic performances with the presented two-port dynamic stiffness model and finite elemental results (Four sets of FEM with H = 0.2

mm, 0.5 mm, 1 mm and 2 mm).

Trang 5

Table 2

Key geometric parameters of the improved bridge-type compliant mechanism.

BysubstitutingEq.(7)intoEq.(8),therehas:

fi1=(k1,1xi1+k1,2xo1)+(k4,1xi1+k4,2xo2)

fi2=(k2,1xi2+k2,2xo1)+(k3,1xi2+k3,2xo2)

fo1=(k1,3xi1+k1,4xo1)+(k2,3xi2+k2,4xo1)+M·xo1

fo2=(k4,3xi1+k4,4xo2)+(k3,3xi2+k3,4xo2)+M·xo2

(10)

RewritingEq.(10)astheformofmatrix,thetwo-portdynamic

stiffnessmodeloftheimprovedbridge-typecompliantmechanism

canberegularlyexpressedas:

fi1

fi2

fo1

fo2

=

k1,1+k4,1 0 k1,2 k4,2

0 k2,1+k3,1 k2,2 k3,2

k1,3 k2,3 k1,4+k2,4+M 0

k4,3 k3,3 0 k4,4+k3,4+M

·

xi1

xi2

xo1

xo2

(11)

where fi2=-fi1=[fp; 0;0]and fo1=fo2=0aretheinputandoutput

forces.fpistheinputforceactuatedbypiezo-stacks.xi1,xi2,xo1

andxo2aretheinputandoutputdisplacements

3.2 Parameterinfluenceanalysis

Actuatingforceswiththemagnitudeof100Nandthefrequency

rangefrom0Hzto1000Hzwereexertedontheinputportsinthe

x-directiontocalculatethestaticanddynamicperformances.The

materialwasselectedasspringsteelwithYoung’smodulusof200

GPaanddensityof7850kg/m3.Thegeometricparametersarelisted

inTable2.Foursetsoffiniteelementsimulationwiththe

commer-cialsoftwarepackageANSYSWorkbench15.0wereemployedto

verifythetwo-portdynamicstiffnessmodel.TheSolid186element

waschosentobuildthemodelandtheadvancedsizefunctionof

proximityandcurvaturewasadoptedtorefinetheelement.The

resultswereproven tobeconvergentandaccurateenough.The

static analysisand harmonicanalysisin ANSYSWorkbench15.0

werecarriedouttoevaluatethestaticanddynamicperformances

andthencomparedwiththetheoreticalresults

Whensettingfrequencyω=0rad/s,thedisplacement

amplifi-cationratioR=xo/xiandinputstiffnessKin=fi/xicanbecalculatedby

solvingthelinearequationsetsofEq.(11).Thosetwostaticindexes

wereplottedversusgeometricparameterHshowninFig.5(a)and

(b).Moreover,startingfromtheinitialvalueoffrequencyf=1Hz

(ω=2␲f)andincrementingstepbystepwithf=1Hz,the

fre-Fig 6. Theoretical prediction of the displacement amplification ratio of the two output ports by offsetting the node position of the input ports.

Fig 7. Picture of the improved bridge-type compliant mechanism actuated by piezo-stacks.

quencyresponseofoutputdisplacementscanbecalculatedandone

iscurvedinFig.5(c)versusfrequencyfwithgeometricparameter

H=0.5mm.Similarly,thefundamentalfrequencyagainst differ-entgeometricparameterHcanbeeasilyobtainedbycheckingthe peaksofthefrequencyresponsecurve,asshowninFig.5(d).One canseethatthetheoreticalmodelwelldescribesthechangetrend

ofthestaticanddynamicperformanceswithrespecttothefinite elementalresults.TheoptimalgeometricparameterH=0.5mm canbestraightforwardlyconfirmedfromthesecurvestofabricate theprototype

Inaddition,itcanbeseenfromFig.5(a)thatthedisplacements

ofthetwooutputportsbecomeinconsistentwiththeincreaseofH duetothetransverseasymmetryoftheimprovedbridge-type com-pliantmechanism.Thisdiscordancecanberelievedbyadjustingthe positionofpiezo-stacksinactualapplications.Inordertosupport thisviewpoint,thedisplacementsofthetwooutputportswere the-oreticallycalculatedwiththesameprocessasthatinFig.5(a)but

byoffsettingthenodepositionoftheinputports.During calcula-tion,thenodepositionofinputportscanberegardedastheforce pointsofpiezo-stacks.FromtheresultsinFig.6,thedisplacements

ofthetwooutputportsbecomeequalinthedomainofgeometric parameterH=0.5mmwhentheoffsetofthenodepositionis0.2 mm

Trang 6

Fig 8.Experimental results of the static and dynamic performances of the improved bridge-type compliant mechanism (a) Output displacement under frequency of 1 Hz (b) Frequency response curve.

Fig 9. Schematic diagram and three-dimensional view of the presented piezoelectric two-stage servovalve based on the improved bridge-type compliant amplifying mechanism.

Piezo-stacks(modelNAC5023-H40)withtheaxialstiffnessof

150N/␮mwasadoptedasthemicromotiongenerator.The

mech-anism wasfabricatedwith theInvarsteel and by thewire cut

electricaldischargemachiningtechnique.Fig.7providesthe

proto-typewiththeassembledpiezo-stacks,whosedimensionis70mm×

64mm×15mm.FromtheexperimentalresultsinFig.8,theoutput

displacementof0.24mmforoneoutputportcanbeobtained,and

thefirst-orderresonancefrequencyoftheimprovedbridge-type

compliantmechanismwasmeasuredas880Hz(including

piezo-stacks).Inaddition,hysteresiserrorofpiezoelectricmaterialcan

beobservedinFig.8(a),andthistypeoferrorcanbefurther

com-pensatedbysomecontrolstrategies[32]butisnottheemphasisof

thecurrentstudy.Ontheotherhand,thetheoreticalpredictionis

ingoodagreementwiththefiniteelementsimulationwithsmall

errorsasshowninFig.5,whilethelargerdiscrepancybetweenthe

theoreticalresultsandexperimentaltestingcomesfromthe

dis-placementattenuationeffectofpiezo-stacksunderaspringload

andprototypingerrors,suchasmismatchingofstructural

param-eters,machiningerrors,misalignmentandassemblingerrors

4 Application for designing a piezo-valve

4.1 Conceptualdesign

A two-stage four-way proportional flow control valve with

thepilotstagebeingtwoslidingspoolsdrivenbytheimproved

piezoelectric bridge-type compliant mechanism is designed, as

schematicallyillustratedinFig.9.Thesecondstageemploysthe

hydraulicamplifierforalargeflowrate,whichhasbeenwidely

adoptedintraditionalnozzle-flapper,jet-deflectorordirect-drive

hydraulicservovalves[33,34]

Twooutputportsoftheimprovedbridge-typecompliant mech-anismaredirectlyconnectedtothetwopilotslidingspools.The inputvoltage generates linear deformation of piezo-stacks and theamplifiedhomodromousmotionmovesthetwoidenticalpilot spoolsslidingbackandforth,openingoneorifice(portaorportb)

tooilsupplyportPwhilesimultaneouslyconnectinganother ori-ficetooilreturnportT.Thisgeneratesapressuredifferenceand forceimbalanceacrossthemainspoolthatcausesittomoveback andforth.Theslidingmovementofthemainspoolopensor over-laystheloadcontrolorificewindowsAandBonsleeveandthus modulatesthefluiddirectionandflowrate

Itshouldbenotedthat theelasticdeformation ofcompliant mechanismprovidesarestoringforcefordynamicmotionofpilot spoolandnoextraspringisneededinthecurrentdesign.Thedesign withslidingspoolsalsopromisestobelessoilcontaminationand lowleakage.Incomparisontopreviousfour-wayservovalves actu-atedby two orfour pairsof piezo-stacks [25,26], onlya group

ofpiezo-stacksisrequiredavoidingthecomplexityofcontroller thankstothebi-motionsoftheimprovedbridge-typecompliant mechanism

4.2 Prototypeandexperimentalsetup Thespoolandsleeveoftheproposedpiezo-valvearemodeof Cr12MoVsteel,andtheprototypeisshowninFig.10.The piezoelec-tricservovalvewasfixedtothevalvetestrigtoevaluateitsstatic anddynamicperformances,andtheexperimentalsetupisshown

inFig.11.Anti-wearhydraulicoil(Mode46)wasusedasthe work-ingmedium.Theflowcharacteristicswererecordedandanalyzed withadatarecorder(YihengInc.,China).Apoweramplifierwith themaximumoutputvoltageof200Vdevelopedinourlabwas

Trang 7

Fig 10.Prototype of the presented piezoelectric servovalve.

Fig 11.Experimental setup for evaluating the static and dynamic performances.

utilizedtodrivethepiezo-stacks.Displacementsofthemainspool

wasmeasuredbyaLVDTdisplacementsensor(UM-375,Univo

Sen-sorInc.)andthenfeedbacktoacontrollerfortrackinganopening

orificeof±0.8mm.Alltestswereintendedtobeperformedunder

no-loadconditions

4.3 Measuredresults

Fig.12 showsthestepresponse ofthemainspoolat a

sup-plypressureof30bar.Itisshownthatthemechanicalresponse

Fig 12.Measured results of step response of the main spool.

Fig 13.Measured results of the dynamic bandwidth of the main spool.

time reaching 60 % and 100 % of the maximum opening ori-fice(corresponding toa maximum spoolposition of±0.8mm)

is respectively 5.9 msand 8.5 ms.The fastresponse time in a matterofmicrosecondsiscomparablewithtypicalsmart-material basednozzle-flapperanddirect-driveflowcontrolvalvesin litera-ture[25,26,33,34],butwiththeadvantageofhavinglargerstrokes (largerflowrate)

A second experiment was performed to show the dynamic behavior of the designed two-stage piezo-valve in frequency domain.In this case,sine sweepvoltagesrangingfrom1 Hzto

150Hzwereappliedtothepiezo-stacks.AsshowninFig.13,the dynamicbandwidthwiththesupplypressureof30barcanbe mea-suredasabout120Hzundertheamplitudeattenuationof-3dB

5 Conclusions

Thispaperdescribesthedetaileddesign,modelingandanalysis

ofanimprovedbridge-typecompliantmechanismtoamplifythe microstrokeofpiezoelectricstackswithenhanceddynamic band-width.Thekinetostaticsanddynamicsofthepresentedbridge-type compliantmechanismareformulatedandanalyzedbyusingthe two-portdynamicstiffnessmodel.Theimprovedbridge-type com-pliant mechanismis furtherappliedto designa piezo-actuated two-stagefour-wayhydraulicservovalve.Withtheunique struc-ture of the improved bridge-type compliant mechanism with doubleoutputports,onlyonegroupofpiezo-stacksis required avoidingthecomplexityofcontrollerandreducingthecost Mea-suringresultsshowthestepresponsetimeof5.9msand8.5ms (60%and100%ofthemaximumstroke),aswellasthefrequency bandwidthof120Hz(-3dB)atthesupplypressureof30bar

Trang 8

Author statement

Mingxiang Ling: Conceptualization, Modeling, Original draft

preparation,revision

JiulongWang:CAD-Drawing,Designofthecompliant

mecha-nism

MengxiangWu:Designofthepiezo-valve,Experimental

mea-suring

LeiCao:Softwareandnumericalvalidation

BoFu:ReviewingandEditing

Allauthorsreadandcontributedtothemanuscript

Declaration of competing interest

Noconflictofinterestexitsinthesubmissionofthismanuscript,

and themanuscript isapprovedbyallauthorsforpublication.I

would liketodeclareonbehalfofmy co-authorsthatthework

describedwasoriginalresearchthathasnotbeenpublished

pre-viously,andnotunderconsiderationforpublicationelsewhere,in

wholeorinpart

Acknowledgment

The authors acknowledge the research projects funded by

the National Natural Science Foundation of China [grant

num-ber 52075179], the Applied Basic Research Program of Science

andTechnologyDepartmentofSichuanProvinceofChina[grant

number 20YYJC0312], and thePresidentialFoundationof China

AcademyofEngineeringPhysics[grantnumberYZJJLX2019008],

forthefinancialsupportincarryingoutthiswork.Theyarealso

thankfultoallmembersofMicroActuatorandSensorGroupfor

helpfuldiscussionandsupport

Appendix A

For flexiblestraightbeams,theexpressions ofstaticstiffness

matrixandthefirstthree-ordermassmatricesinEq.(2)arelisted

asfollows,whereEistheYoung’smodulus,isthedensity,listhe

length,handdarein-planeandout-of-planethickness,A=h·d,and

I=h3·d/12aretheareaandmomentofinertiaabouttheneutralaxis

ofthecross-section,˛2=l2/Eandˇ4=l4A/EI.Formoredetails

ofhigh-ordermassmatrices,possiblereadersarerecommendedto refertoourpreviousstudy[30]

K0= E

l3

4Il2 0 −6Il 2Il2

4Il2

M1=420Al

4l2 0 13l −3l2

4l2

M2 =

EA˛ 4

7EA˛ 4

59EIˇ 8

161700l 3

223EIˇ 8

2910600l 2 0 1279EIˇ

8

3880800l 3 − 1681EIˇ8

23284800l 2

71EIˇ 8

4365900l 0

1681EIˇ 8

23284800l 2 −1097EIˇ8

69854400l EA˛ 4

8

161700l 3 − 223EIˇ8

2910600l 2

71EIˇ 8

4365900l

M3=

2EA˛6

31EA˛6

551EIˇ12

794593800l3

3547EIˇ12

12

8475667200l3 − 112631EIˇ12

76810048000l2

127EIˇ12

3972969000l 0

112631EIˇ12

76810048000l2 − 899EIˇ12

28252224000l 2EA˛6

12

794593800l3 − 3547EIˇ12

23837814000l2

127EIˇ12

3972969000l

Appendix B Supplementary data

Supplementarymaterialrelated tothis article canbe found,

in the online version, at doi:https://doi.org/10.1016/j.sna.2021

112687

References

[1] N.S Kumar, R.P Suvarna, K.C.B Naidu, et al., Piezoelectric actuators and their applications Actuators: Fundamentals, Principles, Mater Appl (2020) 1–16 [2] M.X Ling, L.L Howell, J.Y Cao, et al., Kinetostatic and dynamic modeling of flexure-based compliant mechanisms: a survey, Appl Mech Rev 72 (3) (2020).

[3] P Mercorelli, N Werner, An adaptive resonance regulator design for motion control of intake valves in camless engine systems, Ieee Trans Ind Electron.

64 (4) (2017) 3413–3422.

[4] J Tang, H Fan, J Liu, et al., Suppressing the backward motion of a stick–slip piezoelectric actuator by means of the sequential control method (SCM), Mech Syst Signal Process 143 (2020), 106855.

Trang 9

[5] P Mercorelli, N Werner, Integrating a piezoelectric actuator with mechanical

and hydraulic devices to control camless engines, Mech Syst Signal Process.

78 (2016) 55–70.

[6] S Iqbal, A Malik, A review on MEMS based micro displacement amplification

mechanisms, Sens Actuators A Phys 300 (2019), 111666.

[7] J Hricko, ˇS Havlík, Compliant mechanisms for motion/force amplifiers for

robotics[C] International Conference on Robotics in Alpe-Adria Danube

Region, Springer, Cham, 2019, pp 26–33.

[8] W Chen, J Qu, W Chen, et al., A compliant dual-axis gripper with integrated

position and force sensing, Mechatronics 47 (2017) 105–115.

[9] H.J Jung, J.H Kim, Novel piezo driven motion amplified stage, Int J Precis.

Eng Manuf 15 (10) (2014) 2141–2147.

[10] X Sun, B Yang, A new methodology for developing flexure-hinged

displacement amplifiers with micro-vibration suppression for a giant

magnetostrictive micro drive system, Sens Actuators A Phys 263 (2017)

30–43.

[11] Y.K Yong, K Liu, S.O.R Moheimani, Reducing cross-coupling in a compliant

XY nanopositioner for fast and accurate raster scanning, Ieee Trans Control.

Syst Technol 18 (5) (2009) 1172–1179.

[12] J Park, H Lee, H Kim, et al., Note: development of a compact aperture-type

XY␪z positioning stage, Rev Sci Instrum 87 (3) (2016), 036112.

[13] L Fu, A Song, Model-based load characteristics analysis of the

multi-dimensional force sensor, IEEE Access 8 (2020) 116431–116440.

[14] Q Gao, Y Li, X Lu, et al., A piezoelectric stick-slip linear actuator with a

rhombus-type flexure hinge mechanism by means of parasitic motion, Rev.

Sci Instrum 90 (9) (2019), 096102.

[15] F Chen, Z Du, M Yang, et al., Design and analysis of a three-dimensional

bridge-type mechanism based on the stiffness distribution, Precis Eng 51

(2018) 48–58.

[16] Y Liu, Q Xu, Mechanical design, analysis and testing of a large-range

compliant microgripper, Mech Sci 7 (1) (2016) 119–126.

[17] S.H Chang, B.C Du, A precision piezo-driven micropositioner mechanism

with large travel range, Rev Sci Instrum 69 (4) (1998) 1785–1791.

[18] W Chen, X Zhang, H Li, et al., Nonlinear analysis and optimal design of a

novel piezoelectric-driven compliant microgripper, Mech Mach Theory 118

(2017) 32–52.

[19] L Clark, B Shirinzadeh, J Pinskier, et al., Topology optimisation of bridge

input structures with maximal amplification for design of flexure

mechanisms, Mech Mach Theory 122 (2018) 113–131.

[20] A Arani, A Eskandari, P Ouyang, et al., A novel high amplitude piezoceramic

actuator for applications in magnetic resonance elastography: a compliant

mechanical amplifier approach, Smart Mater Struct 26 (8) (2017), 087001.

[21] M Rösner, R Lammering, R Friedrich, Dynamic modeling and model order

reduction of compliant mechanisms, Precis Eng 42 (2015) 85–92.

[22] J.H Kim, S.H Kim, Y.K Kwak, Development and optimization of 3-D

bridge-type hinge mechanisms, Sens Actuators A Phys 116 (3) (2004)

530–538.

[23] M Ling, J Cao, Z Jiang, et al., Theoretical modeling of attenuated

displacement amplification for multistage compliant mechanism and its

application, Sens Actuators A Phys 249 (2016) 15–22.

[24] T.W Na, J.H Choi, J.Y Jung, et al., Compact piezoelectric tripod manipulator

based on a reverse bridge-type amplification mechanism, Smart Mater Struct.

25 (9) (2016), 095028.

[25] S Yokta, K Hiramoto, K Akutsu, An ultra fast-acting electro-hydraulic digital

valve and high-speed electro-hydraulic servo valves using multilayered PZT

elements[C] Proceedings of the JFPS International Symposium on Fluid

Power, Japan Fluid Power Syst Society 1993 (2) (1993) 121–130.

[26] M Reichert, H Murrenhoff, Development of High-response Piezo Servovalves

for Improved Performance of Electrohydraulic Cylinder Drives, Lehrstuhl und

Institut für fluidtechnische Antriebe und Steuerungen, 2010.

[27] M Liu, X Zhang, S Fatikow, Design and analysis of a multi-notched flexure

hinge for compliant mechanisms, Precis Eng 48 (2017) 292–304.

[28] S Linß, P Gräser, T Räder, et al., Influence of geometric scaling on the

elasto-kinematic properties of flexure hinges and compliant mechanisms,

Mech Mach Theory 125 (2018) 220–239.

[29] F Wang, C Liang, Y Tian, et al., Design of a piezoelectric-actuated

microgripper with a three-stage flexure-based amplification, Ieee/asme

Trans Mechatron 20 (5) (2015) 2205–2213.

[30] M.X Ling, L.L Howell, J.Y Cao, A pseudo-static model for dynamic analysis on

frequency domain of distributed compliant mechanisms, ASME J Mech.

Robot 10 (5) (2018), 051011.

[31] M Ling, J Cao, N Pehrson, Kinetostatic and dynamic analyses of planar

compliant mechanisms via a two-port dynamic stiffness model, Precis Eng.

57 (2019) 149–161.

[32] P Mercorelli, N Werner, A hybrid actuator modelling and hysteresis effect

identification in camless internal combustion engines control, Int J Model.

Identif Control 21 (3) (2014) 253–263.

[33] Z.S Yang, Z.B He, D.W Li, et al., Dynamic analysis and application of a novel

hydraulic displacement amplifier based on flexible pistons for micro stage

actuator, Sens Actuators A Phys 236 (2015) 228–246.

[34] P Tamburrano, R Amirante, E Distaso, et al., Full simulation of a piezoelectric double nozzle flapper pilot valve coupled with a main stage spool valve, Energy Procedia 148 (2018) 487–494.

Biographies

Mingxiang Lingreceived the Bachelor degree from Xi’an Jiaotong University, China, in 2009, and the Master degree (First class Hons.) from Harbin Institute of Technology, China, in 2011 From 2011 to 2015, he was a mechan-ical engineer at China Academy of Engineering Physics From 2015 to 2018, he studied as a PhD student at the Department of Mechanical Engineering in Xi’an Jiaotong University and received the PhD degree in 2019 From

2017 to 2018, He was a visiting scholar with the Com-pliant Mechanisms Lab at the Department of Mechanical Engineering, Brigham Young University, USA He is now an associate research fellow at China Academy of Engineer-ing Physics His main research interests include compliant mechanisms, mechanical dynamics, piezoelectric actuator and sensor (acoustic sensing).

Jiulong Wangreceived the Bachelor degree from Sichuan University, China, in 2015 and the Master degree in mechanical engineering from Xi’an Jiaotong University, China, in 2018 He is now an engineer fellow at China Academy of Engineering Physics His research interests include dynamic test and evaluation, nondestructive test-ing and evaluation of mechanical structure.

Mengxiang Wu received the Bachelor degree in the Department of Mechanical Engineering, Three Gorges University, China, in 2015, and the Master degree in the Department of Mechanical Engineering from Shantou Uni-versity, China, in 2019 He is now an assistant engineer at China Academy of Engineering Physics His main research interests include piezoelectric actuator, mechanical opti-mization design.

Lei Caoreceived his Bachelor and Master degrees in the Department of New Energy, from China University of Petroleum(East China), in 2016 and 2020, respectively.

He is now an assistant Engineer at China Academy of Engineering Physics His main research interests include precision control for piezoelectric actuator, mechanical dynamics.

Bo Fureceived the Bachelor degree in 1991 and the Mas-ter degree in 1994 from Sichuan University, Chengdu, China, and the PhD degree in 2005 from Paderborn Univer-sity, Germany, all in mechanical engineering In 1994, he joined Sichuan University, where he is currently a Profes-sor with the School of Mechanical Engineering His current research interests include fluid power transmission and control, piezoelectric systems and ultrasonic technolo-gies, and multi-objective optimization.

Ngày đăng: 29/03/2021, 16:41

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm