1. Trang chủ
  2. » Mẫu Slide

Chương V. §1. Định nghĩa và ý nghĩa của đạo hàm

4 4 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 88,4 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Hoạt động của giáo viên Hoạt động của học sinh Nội dung ghi bảng -Học sinh thực hiện hoạt.. động 1.[r]

Trang 1

GIÁO ÁN : Định nghĩa và ý nghĩa của đạo hàm (Tiết 1).

Bài 1 :Định nghĩa và ý nghĩa của đạo hàm.

I Mục tiêu:

1.1Về kiến thức:

- Nắm được định nghĩa đạo hàm của hàm số tại một điểm, cách tính đạo hàm bằng định nghĩa

- Hiểu được đạo hàm của hàm số tại 1 điểm là 1 số xác định

1.2 Về kỹ năng:

- Biết cách tính đạo hàm tại một điểm theo định nghĩa.

1.3 Về tư duy:

- Có khả năng vận dụng kiến thức, biết liên hệ với các kiến thức đã học.

1.4 Về thái độ:

-Cẩn thận , chính xác

- Tích cực trong học tập

II Phương pháp dạy học:

-Kết hợp nhiều phương pháp

III Phương tiện dạy học:

* Học sinh:

- Sách , vở , bút , thước đầy đủ

- Chuẩn bị bài trước khi đến lớp

* Giáo viên:

- Sách giáo khoa , giáo án , dụng cụ dạy học

- Bảng phụ

IV Tiến trình dạy học:

1.Ổn định lớp: kiểm tra sĩ số

2.Tiến trình và nội dung dạy học:

Hoạt động 1 : Các bài toán dẫn đến khái niệm đạo hàm.

Hoạt động của giáo viên Hoạt động của học sinh Nội dung ghi bảng -Học sinh thực hiện hoạt

động 1

-Hướng dẫn học sinh thực

hiện các bài toán dẫn đến

Bài 1 : Định nghĩa và ý nghĩa của đạo hàm

I Đào hàm tại một điểm

1 Các bài toán dẫn đến khái

Trang 2

khái niệm đạo hàm niệm đạo hàm

Hoạt động 2 : Định nghĩa đạo hàm tại một điểm

Hoạt động của giáo viên Hoạt động của học sinh Nội dung ghi bảng -Em hiểu thế nào là đạo

hàm của hàm số yf x( )

tại điểm x0

-Nêu chú ý

- Nếu tồn tại giới hạn (hữu hạn) lim

x → x o

f ( x )−f (x o)

x −x o

thì giới hạn đó được gọi là đạo hàm của hàm số

( )

yf x tại điểm x0

Định nghĩa: Cho hàm số

( )

yf x xác định trên khoảng

( ; )a b và x0  ( ; )a b Nếu tồn tại giới hạn (hữu hạn)

lim

x → x o

f ( x )−f (x o)

x −x o

thì giới hạn đó được gọi là đạo hàm của hàm số yf x( )

tại điểm x0 và kí hiệu f x'( ) 0

(hoặc y x'( ) 0 ), tức là

0

0 0

0

( ) ( ) '( ) lim

f x

x x

Chú ý :

∆x được gọi là số gia của đối

số tại x o

∆y được gọi là số gia tương ứng của hàm số

'( ) lim

x

y

f x

x

 

Hoạt động 3 : Cách tính đạo hàm bằng định nghĩa.

Hoạt động của giáo viên Hoạt động của học sinh Nội dung ghi bảng -Yêu cầu học sinh thực

hiện hoạt động 2 trong

sgk ? Qua đó nêu các

bước để tính đạo hàm tại

một điểm

Quy tắc:

B1: Giả sử x là số gia của đối số tại x0, tính

    

B2: Lập tỉ số

y x

Trang 3

- Nêu ví dụ B3: Tìm

0

lim

x

y x

 

Ví dụ 1 : Tính đạo hàm các hàm số sau bằng định nghĩa:

a f x( ) 2 x21 tại x 0 2

b

2 ( )

g x

x

tại x 0 1

Hoạt động 4 : Quan hệ giữa sự tồn tại của đạo hàm và tính liên tục của hàm số

Hoạt động của giáo viên Hoạt động của học sinh Nội dung ghi bảng -Từ ví dụ 1 : f x( ) có liên

tục tại x 0 2, g x( ) có

liên tục tại x 0 1 hay

không?

-Như vậy f x( ) có đạo

hàm tại x 0 2 và liên tục

tại x 0 2; g x( ) có đạo

hàm tại x 0 1 và liên tục

tại x 0 1.Người ta cũng

chứng minh được đối với

hàm số bất kì có đạo hàm

tại một điểm thì liên tục

tại điểm đó

Nếu hàm số yf x( ) gián

đoạn tại x0 thì nó có đạo

hàm tại x0 hay không ?

( )

f x liên tục tại x 0 2,

( )

g x liên tục tại x 0 1

4, Quan hệ giữa sự tồn tại đạo hàm và tính liên tục của hàm số

Định lí: Nếu hàm số yf x( )

có đạo hàm tại điểm x0 thì nó liên tục tại điểm đó

Chú ý:

a Định lý trên tương đương với khẳng định:

Nếu hàm số yf x( ) gián đoạn tại x0 thì nó không có đạo hàm tại điểm đó

b Mệnh đề đảo của Định lý trên không đúng, tức là:

Một hàm số có thể liên tục tại một điểm nhưng chưa chắc có đạo hàm tại điểm đó

Ví dụ : Hàm số f x( )3 x liên tục tại x 0 0 nhưng không có đạo hàm tại x 0 0

Hoạt động 5: Củng cố

- Định nghĩa đạo hàm tại một điểm

- Cách tính đạo hàm bằng định nghĩa

Trang 4

- Mối quan hệ giữa sự tồn tại của đạo hàm và tính liên tục của hàm số.

- Bài tập về nhà: 1, 2, 3 SGK

Thanh Chương, ngày 18 tháng 3 năm 2017.

Giáo viên hướng dẫn

Ngày đăng: 29/03/2021, 14:31

🧩 Sản phẩm bạn có thể quan tâm

w