1. Trang chủ
  2. » Luận Văn - Báo Cáo

Ổn định đàn dẻo của kết cấu chịu tải phức tạp phụ thuộc vào x và y

55 6 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 55
Dung lượng 20,42 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

*/ Nghien cuu hien lugng mat on dinh khi dgng bang phuang phap nghiem giai lich gan dung ciia phuang Irinh Vander Pol.. \ f y Da trinh bay thuat loan, tinh loan bang so, xay dung do th

Trang 1

DAI HQC QUOC GIA HA NOI TRlTOfNG DAI HOC KHOA HOC TlT NHIEN

ON DINH DAN DEO CUA KET CAU CHIU TAI

PHirC TAP PHU THUOC VAC X VA Y

Ma so: QT- 07 - 03

Chu t n de tai : PCS TS Dao Van Dung

Can bo tham gia :

GS TSKH Dao Huy Bich

CN Bui Tin Tliuyet

H a N 6 i - 2 0 0 7

Trang 2

I BAO CAO TOM T A T KET QUA THl/C HIEN DE TAX NAM 2007

_ - '^ A f f

1 Ten de tai: On dinh dan deo cua ket cau chiu tai phuc tap phu thugc

vao X va y

M a s 6 : Q T - 0 7 - 0 3

2 Chu tri d§ tai: PGS TS Dao Van Dung,

3 Can bo tham gia:

GS TSKH Dao Huy Bich, can bg Iruang DHKHTN

CN Bui TIti Thuyit, hgc vien cao hgc truang DHKHTN

4 Muc tieu va noi dung nghien cuu:

Trong thirc te, nhieu ITnh vuc ky thuat ung dung cac phuang phap va

ket qua cua ly thuyel on djnh va dao dgng cua cac he dan hoi va deo Nhieu

f f f

cong Irinh trong xay dung, giao thong va cong nghiep c6 dang ket cau lam va

vo.Vi vay nghien cuu do ben, sir on dinh va dao dgng cua cac he nhu vay

khong chi c6 y nghTa khoa hgc ma con c6 y nghTa thirc lien Khi nghien cuu

on dinh khia canh chinh ma la can quan lam la xac dinh tai trgng tai han, nhat

la khi ket cau do chiu quy luat tai phuc tap phu thugc vao toa do O nuac la

cac nghien cuu van de nay bat dau tir nam 2000 Ira lai day De tai QT 07

*/ Tinh loan lam dan deo chU nhat bang phuang phap phan lu huu han

*/ Nghien cuu hien lugng mat on dinh khi dgng bang phuang phap

nghiem giai lich gan dung ciia phuang Irinh Vander Pol

r \ f f •>

*/ Cac ket qua tinh loan bang so cho mot so vat lieu cu the

f

5 Cac ket qua dat dugc

a, Bai toan ve on dinh dan deo cua tdm mong chiv nhat lam bang vat

lieu nen duv'c chiu tai phuc tap khong thudn nhat

Trang 3

Da xay dung dugc he phuang Irinh on djnh din ddo X6l hai \6p bai

loan vai bien tira ban le va bien ngam tren bon canh Ap dung phuang phap

Bubnov - Galerkin va phuang phap tham so tai dan den he thuc cho phep tim

lire tai han

\ f y

Da trinh bay thuat loan, tinh loan bang so, xay dung do thi mo la anh

f f

huang ciia do manh, ciia tinh nen dugc den lire tai han cua lam

b Bai toan ve tinh todn tarn dan deo chit nhat bang phwong phap

phan tie hitu han

Da nghien cuu lam theo mo hinh tuang thich dira tren ly thuyet qua

qua cua buac lap truac la ca sa de tinh loan buac lap tiep theo Tam dugc

chia thanh cac phan tii chu nhat Chuang trinh dugc thuc hien bang phan

mem Matlab 6.5 Hinh anh mien deo dugc mo ta cu the sau cac giai doan, cho

^ y f \ f

Ihay dugc mem deo xuat hien tir bien dat lire Ian dan vao ben trong tam

c Nghien civu hien tuvng mat on djnh khi dong bang phuang phap

nghiem giai tich gan dung cua phuvng trinh Vander Pol

/ ^ f f

Bai loan dan den viec giai phuang trinh Vander Pol vai he so phu thugc

\ f \

vao tan so ciia lire kich dgng Cac tac gia da tim nghiem giai tich gan dung

ciia phuang Irinh nay, thong qua nghiem Ihu dugc da phan tich sir phu thugc

Cac ket qua nghien ciiu cua de tai duac the hien tren cac bai bao

va bao cao khoa hoc

1 Dao Van Dung, Bui Thi Thuyet Elastoplastic stabibity of thin

rectangular plates made of compressible material under nonhomogeneous

complex loading (to appear in VNU Journal of Science, 2007)

Trang 4

2 Dao van Dung, Nguyfin Cao San Tinh loan tam dan deo chu nhat

bang phuang phap phan tii huu han Tuyen tap cong trinh hoi nghi ca hgc

loan quoc Ian thu 8, Ha Ngi ngay 6-7 thang 12 nam 2007

3 Dao Huy Bich, Nguyen dang Bich, Nguyen Anh Tuan Nghien cuu

6 Tinh hinh kinh phi

+ Cac bai bao, bao cao khoa hgc va thu lao chuyen mon: 12.000.000d

H- Hoi thao va xemina khoa hgc: 4.000.000d

+ Chay chuang trinh va che ban: 1.600.000d

+ Quan ly ca sa SOO.OOOd + Van phong pham va cac chi khac 1.600.000d

Tong cong 20.000.000d

7 Nhan xet va danh gia ket qua thyc hien de tai

*/ De tai vai thai gian thuc hien mot nam da hoan thanh vugt muc ke

hoach so vai chi lieu dat ra ve so lugng bai bao va bao cao khoa hgc Da c6

khoa hgc a hoi nghi Quoc te nam 2007

*/ Cac van de nghien cuu c6 y nghia khoa hgc va hgc thuat, gop phan

t f f

djnh huang ung dung trong viec xem xel sir on dinh ciia cac ket cau

*/ De tai gop phan nang cao chuyen mon ciia can bg, cao hgc va nghien

cuu sinh ciing nhu sinh vien nganh ca hg^ Thong qua cac xemina va hoi thao

' f

khoa hgc da ciing c6 va trang bi them nhiing kien thuc chuyen sau cung nhu

huang ung dung ciia Bg mon Ca hgc, Khoa Toan - Ca - Tin hgc, Truang dai

hgc Khoa hgc Tu nhien, Dai hgc Qu6c gia Ha Ngi

Trang 5

*/ Da huang dan 1 cao hgc, 1 sinh vien theo huang de tai

*/ Nhom de tai kien nghi trong thai gian tai se dugc nang cap de tai theo phuang huang nay

Xac nhan cua ban chu nhiem khoa

• •

Ha Noi ngay 5 thang 1 nam 2008

Chu tri de t^i

T r u a n g Dai hoc khoa hoc Tu uhien

I^U tPUONC*

- i ^ ^ ^ ^ ^ ^ : ^ i v ^ ^ ^

Trang 6

n BAO CAO TOM TAT BANG TIENG ANH

1 Title: Stability of elastoplastic structures subjected to complex loading depending on x and y

Project's code: Q T - 0 7 - 0 3 ; Duration: 2007

2 Head of research group: Assoc Prof Dr Dao Van Dung

3 Paticipants:

Prof Dr Sc Dao Huy Bich

B Sci Bui Thi Thuyet

Duration: 2007

4 Resume on the aim and main contents of project

In practice, there is a lot of technical domains applying the research methods and results of the theory of stability and oscillation of the elastic systems and elastoplastic systems Many structures in contruetion, transportation and industry are the form of the plate and shell Therefore, the investigation on the durability, stability and oscillation of these systems is not only scicntillc sens but also practical sens The main aim of stability problem

is to find critical loads, in particular for structures subjected to the complex loading defending on x and y In our country, the studies on this orientation have been beginning since 2000 up to now The project QT-07-03 has the purpose to investigate these hot current problems

In this project, our staff have investigated the following topics:

a Elastoplastic stability of thin rectangular plates -made of compressible material under nonhomogeneous complex loading

b Calculating elastoplastic rectangular plates by finite element method

c Investigation of Aerodynamical instability phenomena by using a method for the approximated analytical solution of the Vander Pol equation

5 Results

a Scientific activities:

-01 research paper accepted to publication in VNU Journal of science, 2007 -01 research paper have been pulished in the proceedings of 8-th National Conference on Mechanics, 6-7, December, 2007

Trang 7

-01 scientific report in the 1-th Intemational Conference on Modem Design, construction and Maintenance of structures, 10-11, December, 2007, Hanoi, Vietnam

b Training activities: 01 M.Sci and 01 B.Sci

c Scientific papers and reports

- Dao Van Dung, Bui Thi Thuyet Elastoplastic stability of thin rectangular plates made of compressible material under nonhomogeneous complex loading (to appear in VNU Journal of Science, 2007)

- Dao Van Dung, Nguyen Cao Son Calculating elastoplastic rectangular plates by finite element method Proceedings of the Eigth National Conference on Mechanics, Ha Noi 6 - 7 , December, 2007

- Dao huy Bich, Nguyen Dang Bich, Nguyen Anh Tuan Investigation

of Aerodynamical instability phenomena by using a method for the approximated analytical solution of the Vander Pol equation The 1^* International Conference on Modern design Construction and Maintenance of structures, 10 - 11, December, 2007, HaNoi, VietNam

Trang 8

III NQI DUNG CHINK CUA BAO CAO

7

Trang 9

1 M a dau

f \ •' •> f f ^

Van de on dinh khi dgng va on dinh ciia cac ket cau dan deo chiu tai,

dac biet la chiu tai phuc tap dugc quan tam nghien cuu vi khong nhGng c6 y

nghTa khoa hgc ma con c6 y nghTa thuc tiln

» ^ •» ^

De giai quyet bai toan on dinh dan deo can phai xay dung mo hinh phu

f t s y f

hgp, thiet lap cac phuang trinh on djnh va dieu kien bien, de xuat phuang

phap giai, tim bieu thuc de xac djnh lire tai han Lap chuang trinh may tinh

gan dung bang phuang phap giai tich so, nguai ta con di tim nghiem dang giai

tich gan diing

•»

Ngoai ra hien nay do sir phat trien manh me ciia tin hgc, nen trong ca

hgc ung dung nhieu phuang phap phan tii hiiu han de giai cac bai toan xac

f f \ f f

djnh trang thai ung suat va bien dang va mien deo trong ket cau

> y f

Da CO nhieu cong trinh nghien cuu on djnh dan deo ciia tam va v6 chju

tai thuan nhat Tuy nhien khi quy luat tai phu thugc vao toa do thi bai toan

rv r f

dan den nghien cuu he cac phuang trinh dao ham rieng vai he so la ham ciia x

va y Vi vay lop bai toan nay hien nay con it dugc nghien cuu

* \ f f f y y

De tai nham giai quyet mot so khia canh trong nhung van de on dinh

dan deo, on djnh khi dgng nhu vay

2 Noi dung chinh

a Van de on dinh dan deo cua tdm mong cliir nhat lam bang vat lieu

nen dwac chiu taiphivc tap khong thudn nhat

Bai toan nay vai vat lieu khong nen dugc da dugc tac gia VG Cong

Ham nghien cuu nam 2003 O day cac tac gia trong de tai nay nghien cuu vai

vat lieu la nen dugc Da thiet lap phuang trinh on dinh cho tam Khao sat hai

16'p bai toan voi bien tira ban le bon canh va ngam bon canh, Ap dung

8

Trang 10

phuang phap Bubnov - Galerkin va phuang phap tham so tai Xay dung he

thuc tim lire tai han

Det(Hik) =0

Da trinh bay thuat toan va tinh bang s6 cho 4 k6t ciu cu thi:

- Xet tai trgng phu thugc vao tham s6 tai t

Nghiem cua 3 bai toan tren tim duai dang chuoi lugng giac,

- Xet tai trong vai quy luat

p, =(283 + 0.10(1 + 0.35^), (283 + 0-'0 ( i _ 0 25J^)

' b ~ 450' a

Nghiem a day tim duai dang chuoi luy thira

Tinh toan va xay dung do thi mo ta anh huang ciia tinh nen dugc, ciia do

f f

manh den lire tai han ciia tam

f f f r

Ket qua cho thay tam chiu tai phuc tap thi lire tai han nho han khi tam

chju tai dan gian Da chi ra tinh nen dugc c6 anh huang dang ke den lire tai

f

han ciia tam

b Van de ve tinh toan tdm dan deo elm nhat bang phuang phap

phdn tir hivu han

> y f

Phuang phap phan tu huu han, hien nay dugc sii* dung nhieu va rat eo

hieu qua, nhat la khi giai cac bai toan c6 hinh dang phuc tap hoac cac bai toan

dan den cac phuang trinh khong the tim dugc nghiem duai dang giai tich

Trang 11

Bai toan tam dan deo chiu tai phuc tap dan den phuang trinh phi tuyen

VI vay cac tac gia da chgn phuang phap phan tu hiJu han de tinh toan va xay

, ^ f f r

dung mien deo ciia ket cau Da nghien cuu tam theo mo hinh tuang thich, giai

bang phuang phap bien the nghiem dan hoi, qua trinh giai dugc chia thanh k

giai doan, moi giai doan gom n buac lap Ket qua ciia buac truac la ca sa de

Da tinh toan bang so cho bai toan tam lam bang vat lieu tai ben tuyen

tinh CO 4)'(s)/3G = 0,2; cr, = 400 (MPa), v = 0,3; 3G = 2,6 lO" "(Pa), kich

thuac a = 1,6 (m), b = 1,2 (m); h = 0,003^ (m)

f y f f

Quy luat tai dang Parabol va phan bo deu Ket qua cho thay hinh anh

deo xuat hien sau giai doan 6 va sau giai doan 15 thi Ian ra hau nhu toan bg

f t t f f

tam Phuang phap c6 uu diem dung de giuai cac ket cau c6 hinh dang phuc

tap, cac ca he c6 lien he phi tuyen

c Vdn de mat on dinh khi dong

Hien tugng nay dan den dugc mo ta bang phuang trinh phi tuyen dang

f y f

Vander Pol voi he so phu thugc vao tan so cua lire kich dgng:

—J +(2u + 3o-.v^)i-i-a^r^ ~\~aqx^ -\-kx~ qcoscoi

Trang 12

+ Tim nghiem giai tich gan diing thu nhat

+ Tim nghiem giai tich gan diing tiep theo

+ Bieu dien nghiem ciia phuang trinh can nghien cuu ban dau

+ Chi ra cac dieu kien cho phep xap xi

Da giai mot so vi du cu the vai quy trinh:

+ Xay dung cac buac giai

+ L§y cac tham s6 k=l, V 0.025, a 0.0033,a=0.005,q=0.01, ty=0.4,

f y

+ Da xet 4 bg tham so, xay dung cac do thj tuang ung

+ Phan tich va thao luan cac ket qua, cho thay phuang phap cho ta tim nghiem giai tich gan diing ciia phuang trinh vai cac tham s6 khong cSn phai

f

la be Cac ket qua thu dugc khong nhiing c6 y nghTa hgc thuat khoa hgc ma con chi ra dugc nhung hieu ling dac biet nhu la hien tugng xoay, hien tugng Galloping

f f

ung dung Day la tai lieu cho cac nha thiet ke, xay dung va ky su tham khao

De tai da gop phan dao tao sinh vien, hgc vien cao hgc va NCS Theo huang nay da huang dan 1 hgc vien cao hgc, 1 sinh vien he eii nhan tai nang

CO hgc De tai ciing gop phan thiic day su phat trien chuyen nganh ca hgc vat

f r f f

ran bien dang, dac biet la bg mon ca hgc Vai 1 bao cao a hoi nghi Quoc te, 1 bai dang a tap chi khoa hgc DHQG, 1 bai dang a tuj^en tap Hoi nghi ca hgc

toan quoc Ian thu 8 De tai da hoan thanh tot muc tieu de ra

4 CAC CONG TRINH CONG BO

*/ Dao Van Dung, Bui Thi Thuyet Elastoplastic stability of thin rectangular plates made of compressible material under nonhomogeneous complex loading (to appear in VNU Journal of Science, 2007)

*/ Dao Van Dung, Nguyen Cao Son Calculating elastoplastic rectangular plates by finite element method Proceedings of the Eigth Nafional Conference on Mechanics, Ha Noi 6 - 7 , December, 2007

11

Trang 13

*/ Dao huy Bich, Nguyen Dang Bich, Nguyen Anh Tuan Investigation

of Aerodynamical instability phenomena by using a method for the approximated analytical solution of the Vander Pol equation The 1^* International Conference on Modem design Construction and maintenance of structures, 10 - 11, December, 2007, Hanoi, Vietnam

12

Trang 14

IV PHU LUC (Cac bai bao va bao cao khoa hoc)

13

Trang 15

ELASTOPLASTIC STABILITY OF THIN RECTANGULAR PLATES

MADE OF COMPRESSIBLE MATERIAL UNDER NONHOMOGENEOUS COMPLEX LOADING

Dao Van Dung, Bui Thi Thuyet

Department of Mathematics, Mechanics, and Informatics

College of Science, VNU

Stability problem of the elastoplastic plates subjected to the nonhomogeneous complex loading with incompressible materials is investigated in [4], In this paper studied a above problem with compressible materials, established the stability equation and solved one by the Bubnov-Galerkin method Have been calculated and compared the critical forces between the compressible materials and incompressible materials

1 Stability problem

We will consider a thin rectangular plate which has the biaxial dimensions a, b and the

thickness h An orthogonal coordinate system Qx^x-^z'xs attached to the plate so that the plane Ox^Xj coincides with its middle surface

Wc assume that the plate is acted by biaxial compressive forces Py^= p^\t,Xjj^

P22 ~PiiV^^]) depending arbitrarily on t, x^^x^ and shear force p^^ = Pnid- The problem

is proposed that have to establish elastoplastic stability system of equations of the plate

and to define critical value /* and critical forces p n ^ A i V ' ^ ) ' P '^^- P22V ^^\)^

Trang 17

It is easy that the chosen stress values satisfy equation of equilibrium, boundar>' condition of the problem

The arc - lengh of the strain trajectory is given respectively by the formula

Hereafter, we will use the criterion of bifurcation of equilibrium state to study the stability

of plate according to physical relationship (1-1)

2.2 Stabihty equations

Wc use the assumption of A.A Iliusin [2] said t h a t ^ ^ =0 and don't consider the unloading domain, then the stabiltily equation of elastoplastic rectangular thin plate

'L 4 jsj^^Sy., - 0 dx,dXj (2-6)

When the plate is cur\cd, we can get the increments of deformation&*,^ Using the Kirchhoffs a ssumplion wc liavc

in where

Trang 18

Se',, - the small increment of strain of the middle surface,

5x,i - the small increment of curvature and torsion They have the form

The increments Su^, S\v are the funtions of x^ and x^

The increment of stress, according to the theory of elastoplastic process, we have

Sa,, = {D,,a,, -D,,a,,)^^^ + D,,{2S£,, + SE,,)-D,,{S£,, +2Se,,)

UUSE

Sa,, ={-D„a,,+ D,,a„ ) ^ ^ - D,, {2Se,, + ^^22) + A^ (^^,, + 2 ^^22) (2-9)

cju.Se Sa,,=D,,<j,,-^^-^-D,,{25e,,^5e,,yD,,{5s,, ^2Ss,,)+D,,5s 12

Trang 19

The coefficients A^ (/ = 1 —> 9) arc the functions of v, and x^

Putting the expression of 5M,^ in (2-11) into equation (2-6) after series of calculation, we

get

dx\ dx^dx + D

d'd\v ^ d'd\v ^ d'a ' dxldx] "" ^' + A

V ~ d 3w 5^19x2 ^-'^2 ^A

Trang 20

+ when p^j only depends on t, the coefficients A^i = 1 -> 9)don't depend on x, and x^,

then the experssion (2-10) gives us

D,=D,=D,^D,=D,,=D,,=D,,^0,

equation (2-13) returns to the stability equation of thin rectangular elastoplastic plate under complex homogeneous loading [3]

+ If the material is incompressible, then (2-13) gives us the results in [4]

3 Method flnding the critical forces

It is difficult to solve directly stability equation, so we shall use Bubnov-Galenkin's

method to find critical forces The common diagram of the method is:

a) The deflection Sw is expressed in the form

M

/=l

where M - term of a series, R^- the nontrivial terms of series, <5ir- linearly independent

functions and satisfying the given boundary conditions

b) Denoting by F{SW) the left side of the equation (2-13) and putting d\v of (3-1) into

F{(5\\'), the result is

(-1

c) Multiplying both sides of (3-2) equation by S'A\{k = 1 -^ M) and integrating both sides

of the received equation all over the domain of the plate, we obtain

Trang 21

III

0 0 ' = '

\\Y,R,F{5w,)av,dxdy = Q (3-3)

d) Taking k from 1 to M, we get a system of M linear algebraic equations with the

unknowns R„R„ ,R^^ This system has the form

This is an expression to define critical forces

4 Method for determining coefficients H^^

For the plate made of incompressible materials had the results in [4] By the same way,

wc calculate the coefficients //^^ of plates with compressible material subjected to the

complex loads depending on coordinates

This method consists of following steps

a) Dividing the plane of the plate into N rectangular pieces by nodal lines parallel with

its edges, respectively and denoting j-th piece is Q^

b) Because this nodal lines are before fixed so the coordinates are known Therefore, we

can calculate the value of quantities Z),^, a^, o-, cr^ at those nodes

c) At the internal points, by reason of the continuit>* of loading function and dividing on

enough small of each node of piece Q^ may be approximate the belows quantities as

linear function of ,v, = v and v ^ v:

A; =^;i-v^^':V + / ; , 3 J - l : 3 J = l : 4

f 511-^ + ' M : ! ' " ^ ^513' ~ T ' ^ ' ^ : i - ^ ^ ' 5 2 : J " + '523'

Trang 22

e) Integrate (3-5) by the Gaussian quadric method [6]

5 Finding the expression of the increment of deflection

Using the boundary condition, we find the increment of deflection Although there are many choices of the increment of deflection function but always the expresion of the increment deflection function are choosen two forms:

6 Some results of numerical calculation by soft^vare Matlab[5]

a) In the bellow problem, we consider the boundary condition of plates having simply supported along the four edges, that means

Trang 23

The plane of plate is divided into 16 pieces by the lines parallel with the edges of plate

We take the increment of deflection Sw for parts in 6.1,6.2 and 6.3 in the trigonometrical

Poission coefficient K = 0.4 The function ^'(.y) is given in [1], 3G = 2.6x 10^A//^a The

results are presented in table 1

I1ie ratio — = 40; — ^^35, Poission coefficient v varies from 0.2 to 0.5 the arithmetical

h h

ratio equal to 0.1 The function <f}'{s) is given in [1], 3G = 2.6x lO^M/^a The results are

presented in the table 2

An yield point is equal to a^ = 400{MPa)

The ratio - varies from 20 to 45 with the arithmetical ratio equal to 5 , - = 35 and the

h f^

Poission coefficient v^ = 0.4 The function ^ ^ 0 is given in [1], 3G = 2.GxWMPa The

results are presented in table 3

6.3 Problem 3

Let's consider the loading function depending on t parameter and coordinates

Trang 24

p,=(246 + / / l + | ' p,=20t

The ratio - varies from 20 to 45 with the arithmetical ratio equal to 5 , - = 35 and the

h

Poission coefficient 0.3 The function f{s) is given in [1], 3G = 2.6x10'MPa The results

are showed in table 4

results presented in table 5

7 The influence of the slcndcrncss on the stability of plate

Let's consider the problem 6.2 with the loading function depending on t loading parameter

and coordinates

10

Trang 25

p, =(283 + 0.1/ )| 1 + 0.35^ ^,=(Hl±^Y,_o.25i^

450 a)

The ratio - varies from 20 to 45 with the arithmetical ratio equal to 5 , - = 35 and the

n 1^

Poission coefficient K = 0.4 We solve this one in two cases theory of elasticit and theory

of elastoplatic processes The result is presented in table 6

<^ u

528.4 521.2 468.2 435.5 413.4 392.3 Table 1

V

0.2 0.3 0.4 0.5

^u

508.1 552.3 589.9 634.4 Table 2

P*2

603.5 578.8 508.6 453.2 413.6 337.3

^ u

565.9 549.2 502.9 468.8 445.6 412.6 Table 3

11

Trang 26

P\

52.50 49.25 40.75 38.00 32.51 28.00

^ u

465.5 455.7 443.2 437.7 418.2 415.6

491 481.3

470

P\

610.4 598.2 548.9 502.4 498.5 420.5

o-„

509.3 497.4 481.9 471.5

462 430.5

P\

(plasticity) 603.5 578.8 508.6 453.2 413.6 337.3 312.4 302.4 298.5 278.3 256.8

^ u

(plasticity) 565.9 549.2 502.9 468.8 445.6 412.6 398.4 282.3 275.5 243.7 223.5

(elasticity) 670.4 623.5 598.7 532.3 480.7 420.5 398.4 282.3 275,5 243.7 223.5

Table 6

12

Trang 27

The graphics of the above problems are presented as follow/^j

Ngày đăng: 18/03/2021, 17:30

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1]R. H. Scalan. Flutter. Derivatives at Vortex Lock-in. Struc. Eng[M]. ASCE. April 1998 Sách, tạp chí
Tiêu đề: Flutter. Derivatives at Vortex Lock-in
Tác giả: R. H. Scalan
Nhà XB: ASCE
Năm: 1998
[2]G. V. Parkinson. Aeroelastic Galloping in One Degree of Freedom [C]. Proceeding of Symposium on Wind Effects on Buildings and Structures. Vol. J National Physical Laboratory, Teddington. UK., 1963.1: 581 -609 Sách, tạp chí
Tiêu đề: Proceeding of Symposium on Wind Effects on Buildings and Structures. Vol. J National Physical Laboratory
(3]Eurocode 1: Actions of structures-?arr 1-4: General actions - Wind actions [M]. BS EN 1991-1-4:2005 Sách, tạp chí
Tiêu đề: 1-4: General actions - Wind actions [M]
[4] Dao Huy Bich, Nguyen Dang Bich - Application of the Vander Pol equation for investigating aerodynamical instability phenomenon [C]. Proceedings of the Seventh National Congress on Mechanics. Hanoi December 18-20, 2002.1: 83-94.[SjE.Simiu, R.H. Scalan [M]. Wind Effects on Structures. A Wiley-lnterocience Publication. John Wiley and Sono, 1986.1:509 Sách, tạp chí
Tiêu đề: Application of the Vander Pol equation for investigating aerodynamical instability phenomenon
Tác giả: Dao Huy Bich, Nguyen Dang Bich
Nhà XB: Proceedings of the Seventh National Congress on Mechanics
Năm: 2002
[6] Korn G. A., Korn T. M [M]. Mathematical handbook for scientists and engineers. McGraw Hill Book Company, 1968 Sách, tạp chí
Tiêu đề: Mathematical handbook for scientists and engineers
[7] Dao Huy Bich. Nguyen Dang Bich. On the lateral oscillation problem of beams subjected to axial load [J]. VNU - Journal of Science. Mathematics-Physics. T.XX,No4. 2004: 1-10[81 Nguyen Dang Bich, Ngo Dinh Bao Nam Conditions for the approximated analytical solution of a parametric oscillation problem described by the Mathieu equation[J]. VNU - Journal of Science. Mathematics-Physics Sách, tạp chí
Tiêu đề: On the lateral oscillation problem of beams subjected to axial load
Tác giả: Dao Huy Bich, Nguyen Dang Bich
Nhà XB: VNU - Journal of Science. Mathematics-Physics
Năm: 2004

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm