phuidng píuip ìciiih gill NƯ hiún dõnụ ■ ua kinh lẽ đươi ictL Jõnỵ jua sư ihav đói các vè LI to moi irưonụ du qua 11'ình dò thi hầú imàv jLinụ ao >í ỉone 'Onụ Mỏng.. ĩ ừ Ji> noi phuó
Trang 1Đ Ạ I H Ọ C Q U Ố C G I A H À N Ộ I
TRƯỜNG ĐẠI HỌC KHOA HỌC Tự NHIÊN
MÔ HÌNH TOÁN ĐỔI VỚI sự PHÁT TRIỀN KINH TẾ DƯỚI TÁC DỘNG
CỦA Sự THAY ĐỔI MÔI TRƯỜNG
VÀ QUÁ TRÌNH ũủ THỊ HÓA CỦA OỐNG BANG SỒNG HỐNG
Trang 3I - T O M T Ắ T TIẾNG VIẺT
a Đ é tai : M ỏ hình toán đối vói sự phát triển k inh te dưới
tác đ ón g của sư thay đổi moi trư ờ n g và q ua trinh
d \ h i c ríeư và noi lung nghiên cưu
Nụhièn v-ứu K'tiL -Ịuan bưúc Jãu ^LIL phuidng píuip ìciiih gill NƯ hiún dõnụ
■ ua kinh lẽ đươi ictL Jõnỵ jua sư ihav đói các vè LI to moi irưonụ du qua 11'ình
dò thi hầú imàv jLinụ ao >í ỉone 'Onụ Mỏng ĩ ừ Ji> noi phuónu phap luan chunụ đô đánn ụui kinh !c Jưới etc ỉônụ JLia Tì 'I 'rưưriụ 1 ' Vici Nam Hu lu: <jh() cac un Ị \inn ề Joniz hãng \on hién ;nicn *1 LU Đia điõm Jinh _ lu HI là Quang Ninii d v-:n nién Ha! Phom: ĨĨUII Bình V im íOinh.
e Cá c ket qua dat dược
- Bui 1C d â u ỉa v c i n m a (t c a c n h o m le
Xemina phươnu innh dao hàm ncnụ > Đai hoe Bađì Khoa
Xemina p 6 i tích cua Ciiao sư NìỊuyẻn Văn Màu <i Đ H K H T N
Trang 4V Mó hình vir iv •') nhiễm nuoc 1 ' lí)nu -ưa/.sónụ \cn Hiên.
4 Lv lhuvC'1 JỎ 1 moi Iron# việc nụhien JUU num ironụ thLIV N.in.
X M ò h ì n h k h u v è c h t a n c ù a SƯ b i u n t i n n y r ư n g n ụ à p m a u \ C I 1 h i c n
/ Tỉnh hình kinh p h í
V ớ i d u a n ■' 1 ì<'i' 1 )>.)() Sau khi i r ừ j h i p i n q u a n Iv -.uiiị: Ui nl i j o n la 2<s KOO 0 0 0 đ ià m o i k h n a n k i n h p h í q u a J<1 h e p Jiu' ci đ u t n c n k h a i n u h i c n
c ứ u m ỏ h ì n h i h ư c đut C h i l ú đ c l ô v-hiiv m n i h o i ' h a o CcU p h ư ư n g p h a p n ụ h i e n
V Ltu k ò l I m p vn'1 c ơ t i n h Q u a n Ị Ị n i n h nơ! l ii nli u h o n l à m a ' SI' ' l u u n ụ h i c i n
Đè nõn luc I.huv tìicn cóng 'linh \I 11 Jủ rni'1 đc Id! not 01 11 u\_
Trang 5II T Ó M T \ T TIÊM', \ Y H
a P r o j e k l
“ Mathematical models l o r the vX*>nomic d c \ c l d p m c n i u n d e r the
changes I)! environment md p r i ' c c s s )! u r h a n n i / a i i o n >n Red r n c i
Trang 6- Establishment and selection the general method tor the as'Cssmol >1 regional e co n o m i c developmet.
For example: Red rever Delta, coastal regions Quant: Ninh Hal Phi mu Thai Binh Nam Dinh.
e Re s u lt s
- There !S s o m e seminars o f u n i v e r s i t i e s t o t o i c u s o n i h i s p r o j c c i
F( > 1 ' example:
Seminar 1)1 analysis <>1 PioL Dr Nttuvcn \ cin Mail.
Seminar ('I apply mathematics o! Pn>| Dr Nụ liven Quv Hv.
Seminar partial ditlcrcntial Equation ol poi vtcchical University Hanoi
- O r g a n i z a t i o n t h e s y m p o s i u m o n " R e s e a r c h o n j n \ 11'o n m c n L i i
problems hv mathemetics methods" Lit Ha Lom: u i \ Ọuarh: Ninil priAin^'
I I'om [6u> 17 ianuarv 200.3.
g P r o p o s e
- E x t e n s i o n o! i hc p r o j e c t 1(1 i hc n e w p m j c c l I r o m t o I 11*1*
R c s c a r c h >n l l u- d e \ W o p m e n l ' >1 m a n u r o loi'csirv uui Iis ml lnciKv 11
I Ik e co n om ic Jc\ cl op in ci ol I he Coasiiil lemons '>1 \ IL-I N.iii'i
*
Trang 8§ 1 M í ) Đ U
Sư phát trièn kinh iẽ ĩ;an co Lỏni1 JUIIL oont: Hjjfricp hoa liicn Jdi hoa ;t
d o đ o đ ã x.uai h i c n n h i e u k h u c ò n ỵ ru’ h i e p m ó i c h è \ u a i r noi k h u J ò thi 'Th'1
- Hườn s.: !: Đanh _ụiá Mí UK, Jòn.‘j jua inói inroiiL UM hc •>in! 1 ;luti 11 1-1 >nụ
đo co ca kinh le).
N h ư '-(ic n i n h V-Lici C h u f ) u c Đ<|| IIOL K i - p \ I " \ _ I n Ụ T ' • /Av T ò CaiTi T u / 1 7/ i
- H u o h l 2: Tính '-L 1 II [lhit'm nưoc iivn ■"'mu • cn *wcn -IU' :J!u:r;
N i n h Ni l ó Vi Oi L a m N ụ u v ò n M a n h H ù r m ! 5 /
Trinh Till Thanh N \ u v è n Tlui> Ván 16/ -Whiamho Min-I v b i \ vl.ismuv Ođipo /2/, C^pncn Gahuny.crc 2/ Cha rio E Nịị hw.iv 1 k i i v ihdici ru:
Ba n d Bililcw MSI -/ Waiiiic Hinu , 1/ R''Os.jaỉha iu'A 10 ị
- Hươn^ V Vihien -UU linh 'n dinh ■ I.iii -IU_ 1C ' InÍ1 hai
Đ ã n ụ V ă n G i a m i Đ i n h C ò m : Hi f^n L I 1/ V t i A K u / n c i s \ '
W u Y a p m u / 1 /
Hươnu 4: áp dung l> '.huvcl tòi Jõi <VI :v.t> nnn phcU T : J 1 -.<•)
Uu i U’ i h u v ' t i n - Uđ LO X u & n L a m 1 V V ' U \ J!1 Q u \ H \ [>I
- H ư o T i ! : M ô h ì n h k h u c c h ' a n l i a ' I I n h a i ' n o n - u i Mi s : n ụ I I P - n a n '
/4/ ;?/ /6/ /7/ / s / 1 /4/.
Trang 9§ 3 KẾT I X \ N
Đ ế p h á t t n è n r m h i è n JỨU m ò h ì n h r>'cin ớ n e J u r i g ụui! q u v c i ^-ua Kai n u m
mùi (TOỜrm Trước mãi jhúnụ 1(11 jh'Mi I ìui>nỊj Jiinli đè đi 'dii 1 ụ Im: ỉ ì VƯU
UU' OL m ã t l à :
Huong I va hưưnu đc nuhicn -ƯU i phcíi Lricn i:ua hu 'inh iliiii Jmil
n ụ a p m ã n v u n u Vcn mun tinh li ướn* niu ' i u "iai‘ u *1 >1.1 phai i n c n LIJ kiiin vunL’ \ c n h i c n \ í à ' r ư ớ c :nãl v-hdii V i 1 n j n ^'ien Q u a n ụ Minh Hci' Phorn:
T h a i B ì nh N a m Đ i n h
Trang 10X t u ) > 0 cỏ niihTi* là rỉ chuyõVi ilonu vưm \
X ( U) s 'í có lUihui là n chuvên đỏm: í.Iuùi iheu A
I(u.\ I iiíu.V) til cac i;im liièu khiòn.
Ilii o ilnilì nuhìa
I , t U V ) 2; <) n j j h u t if* \ì p h í i n ư i 1 12 l í c h LƯC VỚI A
! t U,V) i M _í.ì ntilili* T» 3 phim ứni» tìiin chế A.
! LU»’nLi iư JÓI VÓI lit u V):
Trang 12X _ F(1,K) ' 1 L ' L
I làm nhiiv S.ÍỈIT) cua I Lhco ĩ ! lè iiiũct TR và i i )
ironu dứ a, h, L\ d, r h.a 0, 5 là các hãng so dương
f)iểu kiện han lỉiiu :
Trang 13-Túc j:ià dẫ nêu iôn ũuưc một sỏ Liôu chuân õn định mủ toàn cục.
Trên cơ sớ dỏ chúnu lôi ilã phái ưión ihành mỏ hình sau dtiv
5 / M ỏ h ì n h r ù n g D 1 ÌÌÌI2 m ain t:íi s in h
Cì oi u lít m á i đ ộ >:áy n o n
V là mậi dỏ câv già
w IÌI mật Jô hại khuyốch lán irony khỏnt! khí irôi trong nước, đái
To nu LỈỎ 6(1) !i.i I.ÒL 10 nấy mẩm cùa hill phu ihuõc VÍU) mức dâì hnị
Dị lii hộ V \ũm IfVn hicn uúa Jâì hỏi
I),A ỈU hè jó chuvốch tán cua hai.
Will Uẽ can đtU ra n 1ì:n nav let :
2/ Vlasashi Aulu anu Uiưshi Yaiii
Complex >iysu-ms and mathematical moueLs
D c p i i r i m u r i ■ \ p p i i L i l P h y s i c s ( ) s a k a l n i v e t M i y S u i U i , O s a k a 2 0 0 1 J
"ỉ/ V l u s c i y a s u V l i m u r u ii ui T o h r u T s u j i k a w a
A u g r c i i a ũ n u ' A ì U e m D y n a m i c s ỉ n Li c h e r r u u a x i s V l o c i c l i n c l u d i n g C i m w i h
/4/ Minoru Tahaia.Tiikshi [ liroyarruuAlsuhi Yaiì' Nohuoki l í sh i ma a nt l [chim Takam
Trang 14winch s y s t e m IS rile best and h o w to Older those systems This p r o b l e m will )fc
chllicul to solve An solution o f p r o b l e m IS obtained 111 I his p a p ei vviih he mathematical model And then an example o f the systems o! plantation forestry 111 Northeaste Vietnam !S iii\'en tor the illustration o f the method
ặ! Pr oblem
Wc must plant a number o f trees 111 the mountains o f Vietnam with W FP r3UỈ
which tree and which set ot tree '.ouedicr will be choosed There D,m\ Viinanrs o f the trees The variant includes Igiitiiltur trees and forestry tree.- 'S
c a l l ed the c o m b i n a t i o n a g r o t o r e s i r v v a r i a n t 111 t h e p a s s e d y e a r s w e Dianied
m a n y experiments o f the c o m b i n a t i o n a g r oforestry variants N o w a p r o b l e m IS
cipeared Ỉ 10 VV Po assess those variants T!iat means how to find the opduiili variant and [lie hieiarchical conseq ue nc e o f the variants Then Ihe optimal Viinaiu will be choosed to the demonstration variant for all country
Resenly year rhere IS many methods to evalue the vananrs Blit rhey ire depending on rhe experiences o f the cx pen of e c o l o g y , agriculture, loicsir mu policy maker Now we mve a new method ipond the mathematical mode i
Simposyum of project Q T - 02- í)4Q uang Ninh 16-17 lanuary, 2003
Trang 15§2 T h e m o d e llin g
We consider N s y s t e m s ! that means N combination agrororestrv variants), with m indicators For example
the econ om ic al effect,
the exchange o f quality ot s o i l ,
the erosion degree, and
the microclimat improve ment,
Data will be gathered in following fable
w h e r e Xji IS the v a n e d v a l u e o f ,Indicator J ot s y s t e m I fr om b e a m i n g to present, ) = ! — * m, 1 —* N
Trang 16We have now the new table
Calculate the weight o f indicator J denoted <JLJ ( the importance proportion
c o e t f i u e n c e o f indicator I in 111 indicators or N systems )(see/6/)
Trang 17and remark the location o f indicator mk
Finanly obtains ntmk, k = l —>IT 1
D efinition
i lie s y s t e m li IS c a l l e d rlie o p t i m a l d e g r e e y ( I < Ỵ < N ), i f s at i fv
with the conditions Zj! I >Y , V| , l < | < m
P r o p o s itio n Let N systems with 111 indicators finite Then there exists always
Trang 18an algorithm to find, the uniform optimal system and the
conseq ue nce o f rest systems
The algorithm IS as follow
Sept I
We make the Older roi the i n d i c a t o r I 111 all systems I l < I < N
I' 1)1 exainpl Xj I > Xj2 > X|3> > XjN
t lie oidei o! mdicaioi I o f system Ị IS denoted bv V ỊI
Then w e have the mati ’x o f orders
The first let Y = N then find the optimal Hi I,
The second let Ỵ =N-I find the optimal Hi2 am on g the rest systems
Trang 19Continue to the end with Y = l
Then w e have the uniform optimal consequence
The problem IS how to find the best rational specie tor this leyion
Indicators are ch o os ed as follow
indicator I P2.05
Indicator 2 Hidrelie Acidity
I n d i c a t o r 3 H e i g h t o f tree
Indicator 4 : Diameter o f tree
We have I he data table
Trang 20The weight aj are calculated as follow
Ỵ = I , the uniform optimal co n s eq ue nc e IS E6, £ 3 , E l , E2, E4
The o p t i m a l varmat IS E5, then c o m e E6 E3, E l , £2 , E4
That means the tree Accia Mangium is the best rational r'or this soil region
* By the ordinary optimal criteriorr
we have the result E5 IS the best variant , then c o m e E2,E6,E1 E3 E4
Trang 21$5 C o n c lu s io n s
1 [li the uniform optimal criterion with Y = I,
It co m e back lo the o r d in a r y o p tm m a l c r ite r io n
2 The uniform optimal system is exact thnn ordinary optimal system
B e c a u s e t h e r e IS not t h e c a s e , III w h i c h rhe o p t i m a l s y s t e m i n c l u d e tile
lowest indicator
3 It IS posible to apply the method for the problem o f the same trees
with many soil legions
4 The method could be don for the another cases to assess
the number o f experim ents, o f social management systems, and o f disease
treatment variants ect
Trang 22E xtinction, Persisten ce and Global Stability
in m odel of P opulation Growth
Trang 23C onversely, if e v e r y solution o f ( 1.1) converges to 0 then F ( u ) < (1 — \ )u f or all a > 0.
Proof: First a s s u m e t h a t Fi l l ) < (1 — A)u for all u > 0 Let .4n be a positive s oluti on
of (1.1) a n d M = m a x - m< t<0 A ị We prove t h a t .4,! < M for all n I n d e e d using i n duc ti on
Let 6 > 0 he a s ma l l n u m b e r Let N = iV(i) such t h a t F ( A n -r n ) < ^2 + e for all n > iV
Now let n > 'V we have
Trang 24Taking l i m s u p on b o t h side we have
On the o t h e r h a n d , t h e s eq ue nc e s ( i4 n } iiili { F f A n ~ tn)} a m b o u n d e d we can choice a
s u b s e qu en ce {i l k} of n a t u r a l integers for 'vhiđì
ỈI = !mi
We c a n also a s s u m e f.iiac t h e s u b s e q u e n c e _ rn} conver ges to d li mit ^3 , say Since rhe
functi on F is c o n t i n u o u s WP nave t i = F ' / j j If ^3 > 0 , t he n
^2 = F i f 3; < '.1
-Clearly, £3 < i?i T h e r e f o r e /'2 < 1 — Look dLt ( l J i we have a co n tr ad ic t io n
C o n s e q u e n t l y ^3 — 0 B u t i-y =■ F ( ^ 3) 'S zero too C o m b i n i n g th is w i t h Í 1 3 <■*-: iidve
^ = 0 , 50 t h e s e q u e n c e Í 4Tt} converges :o 0
Conversely, a s s u m e rhd-t r ' 1) < '1 - A;a ;s not iaiistieci tor ail /A > 0 T wo i.ciieb are
possible:
(i) F ( a ) — (1 — A\(L for some a > 0
(ii) F ( u ) > (1 A;Ú for all f£ > 0
In Mie first case ,4?l — 2 3 a p os iti ve -ioiucion winch J o e s !iot t e n d :o 0 C o n s id e r tie
s econd case Let A tn -■ i - m - r i = = 4(J = 2 We ọrove t h a t A n > 1 for til Bv
i nd u c t i o n , we a s s u m e "nat -U- > Ỉ "or s: < /» T h e n
Trang 25T h e o r e m 2 A s s u m e that F i x ) = // (x *, x) , u>/iere / f ( x \ y ) : (0, oo) X [0 , 00 ) — Í0,oo)
IS c o n tin u o u s f u n c t i o n , increasing in X but decreasing in y an d > 0 if X, y > 0.
T hen every s o lu tio n {i4n } ^ _ _ fri ứ / ^ 1 1 ) iò persistent
Proof: F i r s t we prove t h a t <i47Ẻ} is b o u n d e d from above A ss u me , for sake of c o n t r a diction, t h a t lim s u p ,4n = DO for each integer n > —m , we define
Let /Ỉ.Q > 0 sucli char k ll(j > J We have for n > fjfj,
and t heref ore
Trang 26iNext, we p i o ve t h a i l i minfn-.oo ,4n > 0 A ss u me , for sake of c o n t r a d i c t i o n , t h a t
liiu inf A n = 0 For eac h int eger n > — m , we define
< A i 4 Siấ -H H ( A 3iế, A Su_ i - m )
( because A a t < a nd / i f r , y) is inc re as in g in X‘) 50 we have
A3 ft
which cont radict (2.21 T h e p r o o f is co mpl et e
R e m a r k For a p e r s i s t e n t s o lu t i o n M r , } t h e re ar e two full l i mi t in g s eq uen ce s i P n )^L
a n d { Q n ^ - o o satisfying -filiation 1 1 ' ['or ail n áucli chat
' i m á u p ^ n = Po ' i m i n f - 4 n - Q 0
>1—00
a nd
Qo < p, < Po, Qo < < Po - o o < 3 < TO)VIoreover t h e c o n s t a n t v ar i a t i on f o r m u l a is (see [2, p 1075])
Trang 273 T h e S t a b i l i t y
Froưi now we a l way a s s u m e t h a t t h e al gebr ai c e q u a t i o n
K = X K + F ( K ) has u n i q u e s o l u t i o n K in (0, ooj.
T h e o r e m 3 Suppose that F ( x \ IS r n o r i G t o n e increasing and
T h en every s o lu tio n j A n } o f n 1) converges to K
P r o o f: Let H { x , y ) ~ Fi x' ), t h e n t he c o n d i t i o n (2.1 'ỉ and 2.2) are satisfied a n d T h e o
rem 2 is applied Hence '.here are two c o n s t a n t s c, c such " hat c? < ,4ri < c for all n > m
T h e r e a re full l i m i t i n g s eq uence s { P j and ' Q n / ^ L - o o i u c h t h a t
It follows from (3.4) 'hat ^‘(Po y > 0 a n d fr om (3.5) t h a t < 0- O n t h e o t h e r h an d ,
it follows fr om 1,3 1) t h a t i m s u p ^ ^ ^ r ) < 0, a nd from 3.2) t h a t lim i n f j ^ o c ( i | > r3-
T h u s , two cases a r e possible: or in <0 Q q \ a n d in [Po, 30) t h e r e are two p o i n t s K ' such r.hat
27
Trang 28£{K') — u, or Fo = Qo = K By o u r a s s u m p t i o n t he s eco nd case m u s t hold T h e proof complete.
T h e o r e m 4 Su ppose t hat F<x i LS monot ũTi e decreasing Let
F(, :)
'1 - \ V
First of all /(.;:) is ' i m m o d a t f u nc ti o n aa t h e a u t h o u r s o ft en say S u p p o s e f u r t h e r -;ua
(.4,,} is à p e r s i s t e n t s ol ut i on Á i l i l Let [ Pn } n =- o o Ana { Q n i Z L - z a je t he Hjil limiting
s e quences s a ti sf yi ng “q u a c i o n 1 1) for ail n su ch t h a t
Trang 29o f f IS n e g a ti v e in I — { K } T h e n li mn^oo f n {x) = K f o r ail ĩ í Í.
T h e p r o o f of thi s L e m m a can 'oe found, in [4 a n d 5Ị L e m m a s I a n d 2 t oge t he r give
T h e o r e m 6 A s s u m e that f t f K ) \ < 1 and the Schw a rzia n
_ f ' " { z ) 3 i f " [ x ) \ 2
f ' ( x ) 2 \ f ' ( x ) 1
of f is negative in ĩ — { K } Then every persistent solution o f <1.1) converges to K
T h e following T h e o r e m gives a s u n ci e a t condi tion d e p e n d i n g on "he deiav m for s ta
bility
T h e o r e m 7 Supvose that Fu x y = H ( x x ) as in Theorem 2- and the s ystem
has the only solution p - Q -= K T h i n nvenj solution M r ị o f 1 1.1 converges to K.
Proof: By T h e o r e m '2 -here are '-VO positive c on st an ts c c such "hac c < Ar, < c and
as in ;2 , pp L077-8Ị ve DDtain
•.vhere Po = ' i m s u p - U a n a Q 0 = l i m m r O u r lasT; a s s u m p t i o n Ịives Po = Qo = K and
*he proof IS complete
P - Q >
Xm + l [ H( P Q) ~ H Q , P )Ị
Trang 30Using th e c o n s t a n t v a r ia tio n form ula we nave
T h e o r e m 5 Su p p o se hat j ( Ij(j J < y0 AUo 3.2) IS ISStimed to be h i L t Let
be a p e r s is te n t s o iu a o n o f ( 1 1 } Then A i ĩ u - x A rị = K.
P r o o t : Fron t ( 4 1 ) a n d 4 2 ) '.ve Liave p 3 < Po < ’JO B u t "he f u n c t i o n F is a c r e a s m g
in [0 ,y o | it f o l l o w s fr o m t;he c o n s t a n t v a r i a t i o n f o r m u la : h a t
It follows from ( 3 4 ’) : h a t ị p , > 0 a n d from ( 3.5’ j chat ị \ Q o : < 0 Oil t he or her lauu,
it IS d e a l d i a l l i m ssupc_ QO ^ ; < 0, J.uc: from ,3.2; ' l i d i ’nil i n f ${x ) > 0 Tĩiiiià, wocases a r e p o s s ib l e: J r in (0, Q Oj i n d in p j X) t h e r e d i e "wo p o i n t s K ' s u c h t h a t ị : K " - 0
OL p() = Qq = K By o u r a s s u m p t i o n rA\e iecoiui ase m u s t iiold T h e pr oof is oompiete
F rom now we a s s u m e : n a t f - y o j > ^0 - / j e t he interval 0, / f y o /]■ Clearly "ho
f unction / m a p s / int o itself F r o m Í4.2Ì ve nave 4n £ / tor ill JUI finite a Let '7t d e no t e
the u til iteratio n ot / T h e se facts £ive
L e m m a 1 :/ia£ iinin _ 00 / Tl^ '•I = /v / o r all X s i T h e n every persistent solution o f ( 1 1 ) cớnưerges íỡ K
Proof: As we have m e n t i o n e d a b o ve for a persiáteỉit s o l ut i o n {.4n } we mus t have
A n £ / for all b u t finite T h e r e f o r e w i t h o u t .G6t j f ^ e n a r a l i t y we a s s u me : h a t A n ~ I
for all n N o w t h e p r o o f is ;<Ji!ows dC once f)v result ot I vanov T h e o r e m Lf.
L e m m a 2 Aààurĩtt *hue j f i\ \ < 1 aid Ult iciiujarziun
and s i m i l a r l y
(3.51)
Let
F f /
Trang 31If a + ứ < 1, using T h e o r e m I we have lim / l n = 0 Fioin I 1 UW let a -r 3 > 1 Put