1. Trang chủ
  2. » Luận Văn - Báo Cáo

Investigation of thermodynamic properties of binary a b alloys by the moment method

8 15 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 4,54 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

INTROD UCTIO N It is known th a t if the free energy of a system is known, we can find the thermo­ dynamic properties.. So it is vory important to dpterrnine the free energy V' although

Trang 1

VNU J O U R N A L O F S C I E N C E Nat Sci t.xv n^2 - 1999

IN V E S T IG A T IO N OF T H E R M O D Y N A M IC PR O PE R T IE S

OF B IN A R Y A - B ALLOYS B Y T H E M O M E N T M E T H O D

Vu Van Hung, Hoang Vail Tich, Nguyen Van Quang

F a cu k y o f Physics, Teacher's Training College - V N U

A b s t r a c t B y the m o m e n t method the thermodynamic quantities of binary A - B

a l l o y s w ith f c c s t r u c t u r e are c o n s id e r e d T h e a n a l y t i c e x p r e s s i o n o f t h e r m o d y n a m i c

quavfiUes for the binary A - B alloys as the isothermal compressibility X t ^ linear thermal expansion coefficient a, the specific heat at constant volum C y are obtained The obtained results are apphed to A l - based binary alloys { A lC u , A l N i ) ^ C u - based binary alloys { C i i A l ) and N i - based binary ( N i A l ) and compared with the exper­ imental data.

I INTROD UCTIO N

It is known th a t if the free energy of a system is known, we can find the thermo­ dynamic properties So it is vory important to dpterrnine the free energy V' although it is

At first, wo shall restrict ourselves to the simplest case of pairwise interactions

To calculatp Ự’ of biliaiv A B alloys we shall use the quasi-chemical approximation for

the multi - conipoiu'ut systeiiis [1, 2 3] We denoto th r potential of interaction of an

atom of ( oinponeiit A with th at of componoiit B ^ a n d the numbers of atoms in these

G = Y ^ N A f i A A + N a b M a b - k B T l n W { { N A ] { N a b } ) , (1)

th aiui B - t h C'ornpononts:

, f - ụ -A A - ụ -B B

where nj is the (first) coordination number; HAS = tí\ụ>AB\ is the chemical potential of the pure A B subsystem, i.e., of the imagine one - component system in which all atoms interact with each other by the potential ipAB and k'B is the Boltzman’s constant.

41

Trang 2

42 Vu Van Hung, H o a n g Van Tick, N g u y e n Van Quang

(3)

(4)

In the consideml case where the concentration of on<‘ component is small (for

of the pairs and we have

Substituting (5) into (1) aiui taking into account (4) we get

G - G,\ + N b { 2 h a b - fiAA) - k s T l n^7 \jịỊ \ ( 6 )

wheiP G a is Gibbs free energy of metal A In this paper, using the obtained in [4] results for the Gibbs free eiieig.v GA of niPtal A and (6) WP investigate the thermodynamic properties

of b i n a r y A ~ B a l lo y s with face -centered cubic structures The analytic expressions for the thennociyuainic quantities as the thermal expansion coefficient Q, the specific heats

Cv and Cp, Pte are obtaiupcl The obtained results are compared with the experimental

data

II T H E EXPRESSION OF T H E THER M O D Y N A M IC QU ANTITIES

FOR THE BINARY A - D ALLOYS WITH F c c STRUCTURES.

At first wr can find tlif> Gibbs flPO riif'igy of alloys ill the approximation form analogous to (6)

N„y-is the entropy of mixing

If only take into’ account the interaction of particles being on first coordination sphere, we can find

where A \ ' is the volume change on substituting a particle 5 , Ui is the num ber of particles

Trang 3

atom B with atoms A boiiig on two first and second coordination spheres, i.e., of an atom

of th(' iniagiiu'd one - coinpoiiont system in which all atoms interact with each other bv the

tli(' tirst coordination sphero in the imagined system in which all atoms interact with each

with otht’i oiH*s by tli(‘ Ị)otíMitial ự>AB

Siiỉ>stitutiiifj (9) into (7) we have found the Helmholtz free energy V’ of binary A B

allovb (in the case of the pressure p — 0)

I n v e s t i g a t i o n o f T h e r m o d y n a m i c P r o p e r t i e s o f B i n a r y A - B Alloys by., 43

0.4.4 = 3 { ^ + ỡ [ , T + / n - ( l - e - 2 " ) ] } ,

Ĩ

r*fìí-ì»» f i <1 I Z 1 1 - * 4-K «

-rA.Ao i i i T t ' i a c t i o n poteMitial energy betwoen zero-th and i - th particles of A

i i H ' i a l , i ' Ị ị .\ has H form aiialoí2,ous to ( 1 1 ) but p a r a n i e t o r k in this case has the form

( 12 )

111 t l i i ’ a Ị ) ] ) i o x i n i H t ( ' form

(13)

]>aiauK'tf‘i /.■ aiiil //{) c\rc (‘fpial to

ớ'V4/A(ri)

th(' ùist c o o i d i i i a t i o n s p l i e r o ( i n t h e cas(' o f f.c.c l a t t i c e Uk e q u a l t o Ỉ^I = l , ỉ/2 = a / 2 ) and

If tho displaceniont of the particlf' from equilibrium position of perfect metal A is

A B subsystem i.e., of the imagined one - component system in which all atoms with the

Trang 4

44 Vu Van Hung, H oang Van Tick, N guy en Van Q uang

corresponding nearest neighbors distances at tem p eratu re T are equal to

(15)

By the moment method, the displacement, of the particle of the metal A is considered

and is equal to [4

VỐ =

2 7 0 2

2 q 2 3f)3 ^ 4 0

«1 = 1 +

Ả-4

.TCth.T

0-2 +

Ẳ-6 « 3 + k.^

■0-4

(16)

ư

0.3 =

- T + T

i -x c i n x - t — X c m X -f- - X cTii X,

— + ^^.Tcth.T + — x cWi X + — r cth T + ^.T^cth X ,

: ^ c t h ^ r + ^ T ^ c t h ^ T + ^ T ^ c t h ' ‘ T + i , T ^ c t h ^ x ,

x t n x H -X

1 V - ( d ^ ^ A , A o \ , J d ^ i p A A o \

the aid of (13) and (17) the expression of the displacement of the particle yi (or ya) has

a form analogous to (16), but the parameter k in this case has the form (12) or (14) and

I B A = Ạ l A + 1 b )

l A B = 1 A +

d u L

V d v ĩ n d u l

d ^ < ^ A A { r \ ) ^

/ e g j

We notice th a t the nearest neighbor distance a of the binary A B alloy is approxi­ mately equal to the distances ữA.QAB Oĩ a s A- Besides, from (10) we see th a t the Helmholtz

Trang 5

free ('Ii( i f>,v i,' is H f iuu tioii of t h e Ii(>an'st n o i g h h o i ( li s ta nc p a. T h u s , p x p an c l i n g t hi s f u n c t i o n

on tlic ncaiPst iK'iglihoi distance a in spcond order approximation, wo find the follov/ing ('XjJK'ssious

I n v e s t i g a t i o n o f T h e r m o d y n a m i c P r o p e r t i e s o f B i n a r y A - B A l l o y s by 45

da'^ J t x ( a - cia Ý,

= i Ị' b a {<’ b a ) + 2 d'h'>HA

V' a b ( o ) = ^ ' a b { « a b ) + ^‘ ^ a b Ý

-Fioiii the (lefiuitioii of the isothennal bulk modulo B'r with B y = y o { ^ ) r j , , the K'siilts (10) (19) and miniiiiiziiig Ụ' : ( |^ ) y y, ^ = 0 we can find the pquilibrium distance

( Ì

u.siuii, thv theniiodyiianiic relations and the expression of the Helmholtz free energy

oxpaiision coi'fficii'ut o the sp('cific heats (TV and Cj, of binary A B alloy Where, the

isoĩhrnnal conipiossiiíiliĩy has tho fonn

(2 1)

hon

* l /í _ * i

\ I = rrrrí

: i N

)/■ ^>“ 1 = í r

Fruin lli(' (lofinitioii o f tho t hornial (‘x p a i i s i o n cơ(*ífic-ient, it is e a s y t o d e r i v e t h e

t’t'lluwiiiii f u i n m l a

wIk'K' a ' is the linear thcinml expansion coefficient of the metal A [4];

ri BA

and

\

d'^tBA da.dtì d'^ỶAB

Trang 6

4G Vĩi Van Hung, Ho ang Vail Tich, N g u y e n Van Quang

A p p l y i n g th(' Gil)l)s - l l t ' l i n h o l t z i ( ‘l a t i o n a i u l Tisiii^ (10) \V(‘ Hiui i!io ( ' x p r r s s i ) n f o r

ĩ h o (MU'r^y o f biliarv A Ỉ Ỉ a l l o y a n d s o t h e s p oc iH c h e a t at c o n s t a n f v ol unu' r v lia,s t \\0 f o r m

1 ~ C i i i Ỉ - f /M ) "t” ( ' ỉ ỉ -f ( 2 5 ) ill w l i i c h r'^.' is t l i r l ieai at c o n s i a i i t voliiiiH’ o f iiH'tal A [4j A c c o i d i i i ^ ‘ 0 tlì(' al)o\'(' o h t a i i H ' d i r s i i l t s in 0](li*r t o f ind ' Oi \ \ v Iimst US(' íli(' ('xpi'i'ssioiis )ĩ t h ( '

p a i a i i H ' t e r s Ả- d ( ‘fiu('(l l>y ( 1 2 ) ( 11) a i u l ( 1 8 ) c o i K ' s p o i u l i i i ^ t o t h(' tV(’(' ('iK'i'^y o r

t ' \}ỉ T h ( ' s p o c i í i c h e a t at c o n s t a n t p i ( ‘s s i n0 c.'f> a n d t h ( ‘ a í l i a h a ĩ i c c o i n p i o s s i h i l i t y ; a i ( ‘

n i i i u ' d f r o m f h o k n o w n t l i o n i i o d v i i a i u i c I f ' l a t i o n s

9 T \ ' a ' C r

c , - f ' r -f

\ 7

( 2 6 )

A t l a s t t h ( ‘ i s o l l u n n i a l a n d a d i a b a t i c l ) ul k i nochi li D ị a n d o f l ) i u a i \ ‘ A B a l l o \ '

ar( ' ('(Ịual t o

I I I N U M E R I C A L R E S U L T S F O R A l C u A l X i C u A l A N D X i A l A L L O Y S

T h ( ' i n t i ' i a c t i o n p o t ( ‘n i i a l l)(‘t \ v e e n t w o a t o m s o f a iiK'tal is list'd ill t h e f o i u i

of t l i c n — fif oiii' [7j

I)

f { r ) =

Ì Ì Ỉ

IỈ / /■() Vrn

\vh<*r(' D /■() a i ( ‘ f ioiii tli(' ( ' x p o r i n u M i t a l ( l a t a a n d li i ii a r o ( l o t on ii ii K ’s hv t l i i ‘ ('iu])irii al w a y (ill T ii\)\v 1) [7

{ A l C i i A I N i ) , C i i - l)as('(l h i n a n ’ a l l o y s ( C / / 4 / ) a n d N i - hasf'cl h i n a i v a l l o y s ( N i A l ) w i t h

f c c s t n i c t u n ' {ii\ = 12) U s i i i ^ ( 2 8 ) , Tal)l(' 1 a n d ( Ỉ I ) ( 12) ( 1 4 ) ( 1 7 a n d 18) \V(‘ o b t a i n

t h (' v a l u o s o f ] >a ia ui (' t( ns A T l i r n ' f o r ( ' , fVoiii I'i'snlts iU)(l ( 11) ( 1 5 ) ( IG) ( 20 ) ( 2 7 )

\ vr o h t a i i i í h ( ' \ a l u ( ' s o f till' cuii iỊ íi os si hi l it x' \ /- liiK^ai' t li oi ii ia l ('xj)asicjn c o ( ‘fiic-i('nt a aiiil

c o n s t a n t - p K ' s s u n * spfH’itic lu'iit C/> a t p i r s s u i o p = 0 T h o K ' s u l t s f or A l C i i A Ỉ N Ỉ c t i AỈ

a n d A ' / 4 / a l l o y s a i r sunii iiari z(Hl in T a b l i ' s 4.

In t h ( ' c a s o o f A i C n a n d N i p u r o m e t a l s {tlì(' c o i i c o i i t i a t i o i i o f a t o i i i s B : c Ịi —

())-í l u ' oỉ)taiiKHÌ K ' s u l f s vvi'll coincidi* w i t l i tli(' (' xpiniiiUMital ( l a t a (lal >l (' s 2 1).

F o r Al C' f i , A ! ! \ / ( ’i i Al a n d N i A Ỉ a l l o \ ' s ị C ỉ i < 0 1) t h e c a l c u l a t i H l l i ' s u l i s for (\ a n d

C' r a l s o c o i u c i d i ’ \V('11 w i t h t h í ' (\\p<niiiKMital ( l a t a (Tal)l<‘s 3 4).

Table 1: E x p erim en tal v a lu e s of p a ra m e te rs D, To [7]

Trang 7

lììv es ti g a ti o n o f Therrtiodynamic P r o p e r t i e s o f B i n a r y A - B A lloys by , 47

A1 Cp (Cal/niol.K) 2.99 Õ.07 5.69 5.99 6.18 6.34 6.65

Cu Cp (Cai/mol.K) 3.80 5.37 Õ.78 5.97 6.08 6.17 6.32 6.47 6.63

Ni Cp (Cal/mol.K) 3.40 5.20 5.68 5.89 6.01 6.10 6.24 6.37 6.62

Table 2: The specific h e a t at c o n s ta n t p re ssu re Cp of m etal

Table 3: The specific h e a t a t co n stan t p re ssu re Cp of alloys a t T em p era tu re 400‘^K

Allovs

Table 4: T herm al expansion coefficient a of alloys

Trang 8

In conclusion, it should be noted th at the moment m ethod really to iiiv^sngate tho therniodynainic prop(*rtios of binary allovs with face - rentered cubic structin Theso results are light still for other cubic ones However, we must notice th at thoi) paraiiietei are (leterinined by other formulae

In the following paper we shall use the results of this paper for the invetgation of

th e therniodynaiiiic propeities of alloys witli other cubic* structure

R EFER EN C ES

[1] J.L Hill Statistical Mechanics, Me Gray - Hill Book Company, NewYork 7oronto/Lon

1956: Izd in Lit., Moskva, 1960

3 V.B Magalinsky Izv vuzov, Ftzika, No- 9(1997)17.

4 Nguven Tang and Vu Van Hung Phys Stat Sol (b), 149(1988) 511.131(1990)

165

5] Mark Mostoller and all Phys Rev B, Vo 19, No8(1979) 3938.

Press, New York/London, 1961

7] Zhenshu, G J Daries Phys S t a t S o l (a) V A78, No2(1983) 596.

9] Metal Hand Book EdifAon 1948 (American Society fore metals) 811 ~ 143.

T A P CHÍ KHO A HOC OHQGHN, K H T N t x v n°2 - 1999

N G I I I Ẻ K C Ứ Ư C Á C T Í N I 1 C H A T N I 1 I Ệ T Đ Ộ N G C Ủ A I Ĩ Ợ P K I M e M

THAY T H E A- B BANG PH Ư Ơ N G PH Á P MÔMEN

Khoíĩ Vật Ịý - Đại học Sư phạm - DH QG Hà Nội

Bằng phương pháp mòmen, các đại lượng nhiệt động của hợp kim tha>thế AB có cấu trúc lập phư ang tâm diện đ ã được nghiên cứu Biểu thức giải tích của cá'đại lương nhiệt động như hệ số nén đ ằn g nhiệt XTi hệ số dản nờ nhiệt a , nhiệt d u n g iêng đằng tích C y , của hợp kim thay thế AB đ ã thu nhận được Các két quả lý thuyt được áp dụng cho các hợp kim đôi AI (AlCu, AlNi) hợp kim đòi gốc Cu (Cu Al) v à ^ (Ni Al)

và so sánh với số liệu thực nghiệm

Ngày đăng: 18/03/2021, 10:38

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm