1. Trang chủ
  2. » Luận Văn - Báo Cáo

A three dimentional simulation of the tidally modulated plume in the rever entrance region

13 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 1,99 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

VNU JOURNAL OF SCIENCE... ỉ: The computational domain... A threc-dirncntional sirntỉlntion of thc.

Trang 1

VNU JOURNAL OF SCIENCE Nat S c i & Tech T XIX N01 2003

A T H R E E - D I M E N T I O N A L S I M Ư L A T I O N O F T H E T I D A L L Y

M O D Ư L A T E D P L Ư M E IN T H E RIV K R E N T R A N C E R E G I O N

N g u y ê n Minh H u a n

D e p a r t m e n t o f H y d r o -M e te o r o lo g y a n d O c e a n o g r a p h y

C o llc g e o f S c ie n c e , V N U

A s t r a c t A three d im cn tion aỉ mathcm atical model ùH presen ted to com putc the

ivatcr levcl, velocity a n d sa lin ity distributions in stra tifie d Coastal Lvaters a n d

ti d a lly m o d u la te d p lu m c o f th c riv c r e n tra n cc region T h e m o d c ỉ s y s tc m c o n s is ts

of h ydrodyn am ìc, tran sport an d turbulence closure modcls In the h y d ro d yn a m ìc

m o d e l c o m p o n c n t, th e N a v ic r -S to k c s c q u a tio n s a re s o lv e d iv ith th e h y d r o s ta tíc

a s s u m p tio n (Itìd th e B o u s s in c s q a p p ro x im a tio n T k c tr a n s p o r t m o d c l coruĩists o f

th c iv a tcr tc m p c r a tu r c a n d s a lin ity tr a n sp o rt mocleLs T h e v a r ia tio n s in th e Lưatcr

te m p c r a tu r e a n d s a lin i ty in fĩu e n c e th e Uỉater d e n s ity , a n d in r c tu r n th e v e lo c ity

fic ld T h e e q u a tio n s o f m o m e n tu m a n d c o n tin u ity a rc soỉvccl n u m e r ic a lly u s in g

th e m o d c -s p littin g tc c h n iq u e A s th e tu rb u le n ce m o d el, a o n e -e q u a tio n k -e p s iỉo n

tu r b u le n c e m o d e l is a p p lie d ỉn th e tr a n s p o r t rnodel th e th r c e - d im c n tio n a l

tíd v c c tiv c d iffu 8 Ìo n e q u a tio n are solved The m o d e l is a p p lie d to a re c ta n g le

b a s in e n clo se d by a Coastal b o u n d a ry a n d 'th ree opcn sea b o u n d a r ie s , ti d a l

fo r c ỉn g is im p o s e d in th c fo r m o f CI /ric tio n le ss K e lv in w a v e w ith o Ị fr c q u e n c y

c n te r in g a t th e ivestcrn b o u n d a rỵ , fr c s h w a te r lo a d in g w a s ta k c n in to a c c o u n t a t

lo c u tio n o f one r iv e r m o u th , Uỉhich rcached a to ta l o f lOOOm1 s 1

1 I n t r o d u c t i o n

A n e s t u a r y is a n a r e a o f in t e r a c tio n betvveen s a l t a n d ír e s h vvater T h o nnơ)§t

c o m m o n d e f in it io n u s e d t h a t s t a t e s "an e stu a r y is a s e m i - e n c l o s e d C o a sta l b o d y of vvater vvhich h a s a fr e e c o n n e c t io n w ith th e op en se a a n d vvithin vvhich s e a w a t e r is

m e a s u r a b l y d ilu t e d w ith fr e sh w a t e r d erived from ia n d d r a i n a g e ” T h e e s t u a r i m e

inHuence may extend to nearshore Coastal waters vvhere seavvater is diluted by Ịaind

d r a i n a g e b u t b e y o n d t h e c o n í ì n e s o f e m e r g e n t la n d - m a s s e s

T h e c la s s ic d e f in it io n o f a n e st u a r y in c lu d e s t h e s e t h r e e c h a r a c t e r i s t u c s :

s e m i e n c l o s e d , fr e e c o n n e c t io n vvith th e open s e a , a n d í r e s h w a t e r d e r iv e d fro m lain d

d r a i n a g e T h e s e t h r e e c h a r a c t e r is t ic s g o v e rn t h e c o n c e n t r a t i o n o f s e a w a t ; e r , therefore, s a lin it y is t h e k ey to e s t u a r in e c la s s iíìc a t io n T h e m ixing o f fr e sh V, a \te r

a n d s e a w a t e r p r o d u ce s d e n s it y g r a d ie n ts t h a t d r iv e d i s t i n c t i v e e s t u a r i n e ( g r a v it a t io n a l) c ir c u la t io n p a t t e r n s

T h e s e c ir c u la t io n ancỉ s h o a l i n g p a t te r n s differ w i t h e a c h e s t u a r y sy stc e m accorcỉing to t h e d e p t h , tid a l a m p lit u d e and p h a s e a t t h e m o u th , and t h e a m o u n l t of

fr e sh w a t e r flo w in g in t o t h e b a sin

3 0

Trang 2

A t h r c c - d i m c n t i o n a l s i r n n l a t ÌOĨI o f th c 3 1

T h o t id e t h a t a p p r o a c h e s t h e m o u th o f t h e e s t u a r y is th e r e s u l t o f all t h e

a s tr o n o m ic a l, m e t e ọ r o l o g ic a l, s e is m ic , and m a n - m a d e ía c to r s a f f e c t in g am p lit.ud e and (Yequency o f t h e vvave A s th e tid e e n t e r s t h e e s t u a r y , it is g r e a t ly in f lu e n c e d bv

t h e river d e p t h , w id t h , a n d d is c h a r g e

S u p e r i m p o s e d on t h i s tid a l a c tio n is t h e f r e s h w a t e r / s a l t w a t e r in t e r a c tio n S a l t

w a ter w ill a d v a n c e up a s y s t e m u n til th e tid a l flơw c a n no lo n g er o v e r c o m e t h e riverflow D e p e n d i n g o n t h e r e la t io n s h ip betvveen tid a l flow a n d river flow, t h e

e st u a r y c a n b e c l a s s i f i e d by i t s s a lin it y s t r u c t u r e a n d r e s u l t i n g c ir c u la tio n p a t t e r n s

2 T h e o r e t i c a l c o n s i d e r a t i o n s

To s i m u l t e w in d d r iv e n c ir c u la tio n a n d d e n s i t y c u r r e n t s t h a t occur in Coastal

w a te r s e s p e c ia lly in e s t u a r y s t r a t if ie d bv s a lin it v and t e m p e r a t u r e la y e r s c a u s i n g

s i g n i í ì c a n t la t e r a l d e n s i t y g r a d i e n t s , t h r e e - d im e n t io n a l m a t h e m a t ic a l m o d el a re

n e c e s s a r y T h e d e v e lo p e đ t h r e e - d im e n t io n a l m a t h e m a t ic a l m od el is c a p a b l e of

c o m p u tin g t h e w a t e r le v el a n d vvater p a r tic le v e lo c ity clistribution in t h r e e p r in c ip a l

d ir e c tio n s by s o l v i n g t h e N a v ie r - S t o k e s e q u a t io n s u s i n g t h e B o u s s i n e s q

a p p r o x im a tio n a n d t h e a s s u m p t i o n o f v e r t ic a l h y d r o s ta tic e q u ilib r iu m , t h e

c o n t in u it v e q u a t io n a n d e q u a t i o n s of te m p e r a t u r e a n d s a lin it y

2.1 G o v e r n i n g e iỊ u a ti o n s o f th e m o d e l

T h e b a sic e q u a t i o n s in t h e th r e e -c ỉim e n s io n a l c a r t e s ia n c o o r d in a te s y s t e m are:

+ // — + V — + Ví' — - A' = — ——

/ 1 \ ỉ r i ỵ

0

- +

cu

«h' c v

—- + // — + V

< ỉ

~\

( z

du

dz + ~ r*y +r x

d_

(2.3)

(2.4)

— + tỉ —— + V —— +

1 dJ d

- +

-A) c p d z d z

d ĩ

õ x ■H

a r

a r

-+ 5 I I - + V’ — + H' -—■>

ơ Õz

( ~ <• \ ò

-T- -t- 11 ~ + — +s 11 X "

vvhere ( u ,v tw ) a r e t h e c o m p o n e n t s of t h e c u r r e n t , T d e n o te s t h e t e m p e r a t u r e , s th e

s a l i i i t y , f = 2 0 s i n 0 t h e C o r io lis ír e q u e n c y , ũ =271/86164 racl/s th e r o ta tio n

Trang 3

32 N g u y en Minh Hu a n

(Yequencv of t h e E a r th , g t h e a c ce le ra tio n o f g r a v ity , p t h e p r e s s u r e , VT a n d ẢT th e

v e r t i c a l e d d y v i s c o s i t y a n d d iffu sio n c o e f fic ie n ts , Ản t h e h o r iz o n t a l d iffu sion

c o e f f ic ie n t for s a ỉ i n i t y a n d te m p e r a t u r e , p th e d e n s it y , Po a r e f e r e n c e d e n s it y , cft th e

s p e c ií ic h e a t o f s e a w a t e r a t c o n s t a n t p r e s s u r e a n d 1 (x, y, z, t) s o la r irracliance.

T h e h o r iz o n t a l c o m p o n c n t s of t h e s t r e s s t e n s o r a r e d e f in e d by

- 2 v

■5

du

y x XV' = V', du ô v

d V õ x

ỡ y

(2.8)

(2.9)

w h e r e VH is t h e h o r iz o n t a l d iffu sio n co effic ien t for m o m e n t u m

T h e n u m e r ic a l s o l u t i o n s o f t h e m o d el e q u a t i o n s a r e g r e a t l y s im p liíle d by

i n t r o d u c in g a n e w v e r t ic a l c o o rd in a te t h a t t r a n s íb r m s b oth t h e s u r fa c e and th e

b o t t o m in to c o o r d in a t e o f s u r f a c e s (P h illip s 19Õ7).

Suríàce ơ 1

u

Bottoni o 0

F ig u re 1.1 T h e a-coorcỉinate tr a n sfo m a tio n in t h e v ertical

T h e f o llo w in g c o o r d in a t e tr a n s fo r m a tio n is app lied:

vvhere

ơ = z + h z + h

is t h e c o m m o n ly usecỉ a - c o o r d in a t e v a r y in g b e t w e e n 0 a t t h e b o tto m and 1 at th e

s u r ía c e T a k i n g /(0 ) = 0 a n d / ’(1) = 1 t h e e q u a t io n o f t h e b o tto m t a k e s th e sim p le

Trang 4

A t hrcc-dirtient iotial simu la tio n o f the. 33

form z* = 0 w h i l e t h e m o v in g s u r fa c e tr a n s ío r m s in t o z * = L T h is is íu r t h e r

i llu s t r a t e d in F i g u r e 1 .1 .

T h e t r a n s í o r m e d v e r s i o n s of t h e e q u a t io n s o f h o r iz o n ta l m o m e n t u m ,

h y d r o s ta tic e q u i ỉ i b r i u m , t e m p e r a t u r e , s a lin it y and c o n t in u it y a r e g iv e n by

I (

7 ( i

—7 Ụu) + ^7 - ^ ụ i r

= - » - p r - t - 4 + Q\ + , ~ r

r X p u õ x J c z

\ ũ , , x ì D , v

V j d u

J õz*

(2.12)

- 7 — r ( » + 7 7 7 ( - / w v ) + — - - ~ ự v ) + - 7 v ) + fu

c C 1 r‘/ >, ^ 1 p í I^r r v

(■>' />i, (>>' J (í: V J d z ,

(2.13)

L Ũ S l

J (V

J d t + 77 7 7 ^ + - 7■! d V/ ;ạ + - 7/ #-<■*•*•>^ 7

_L -ẼL I g

J p íi c p d z ’ J d z *

JÀT

d ĩ '

L _ L

./ í V /í

L A

./ d.v 7 /

Ỡ7' '

H r> •

^ >

(2.15)

1 ổ í

./ rV

1 í)

J cy

Jk i r-s \

Xi

ỡ r fl.v

1 a

J d x ' JẢ

ÕS , \

II ,

d x

(2.16)

Trang 5

34 Nguyên Minh Hucunì

2.2 T u r b u l e n c e s c h e m e s

O n e of t h e m o s t i n t r i c a t e p r o b le m s in o c e a n o g r a p h ic m o d e llin g is a n a đ e q u a tee

p a r a m e t e r i s a t i o n o f v e r t ic a l e x c h a n g e p r o c esses In t h e p r e s e n t m o d el th e y a.ree

r e p r e s e n t e d t h r o u g h t h e e d d y c o e f fic ie n ts VT a n d Ả r V a l u e s for t h e s e tvvco

p a r a m e t e r s a r e to b e p r o v id e d by a tu r b u le n c e s c h e m e

A large v a r i e t y o f t u r b u l e n c e p a r a m e t e r i s a t i o n s w ith a s u b s t a n t i a l r a n g e o:>f

c o m p le x it y h a v e b e e n p r o p o s e d a n d v a lid a t e d in t h e lit e r a t u r e T h e s e le c t io n o f ía

s u i t a b l e s c h e m e is o f t e n a d if fic u lt t a s k s in c e it d e p e n d s o n t h e t y p e o f p h y s i c a i l

p r o c e s s e s sp ecific for t h e s i m u a t e d a rea (e g tid e s , t h e r m o c l i n e s , r iv er íron ts, ).

In a n a lo g y w it h m o le c u la r d iffu sio n w h e r e t h e eddy v is c o s it y a n d d i f f u s i o m

c o e f f ic ie n t s a re p r o p o r tio n a l to t h e m e a n v e lo city t i m e s a n d t h e m e a n free p a t h cof

t h e m o le c u le s , t h e e d d y c o e f f c i e n t s VT a n d Ả T a r e c o n s id e r e d a s t h e product off :a

t u r b u l e n t v e lo c it y s c a l e a n d a le n g t h sca le / u s u a l l y d e n o t e d by t h e K o lm o g o r o v

/-P r a n d t l “m ix in g l e n g t h ” A c o m m o n ly u s e d v e lo c ity s c a l e is t h e sq u a r e root ooĩ

t h e t u r b u le n t k in e t ic e n e r g y T h i s p a r a m e te r c a n b e o b t a in e d by s o lv in g a t r a n s p o r r t

e q u a t io n T h e m o s t g e n e r a l form o f t h is e q u a t i o n s , a s u s e d in t h e p ro g r a m , iis vvritten as

w h e r e t h e t i m e d e r i v a t i v e , t h e h o r iz o n ta l a n d v e r t i c a l a d v e c t io n a s t h e d iffu sic o n

o p e r a t o r s are d e f in e d by

1 d

T ( k ) = ^ ( J k )

J õt

( 2 1 8?a)

( 2 1 8 íb )

A J k ) = \ ~ ( J w k )

J dz

( 2 1 8 k )

(2.18^d)

N 2 a n d Af2 a r e s q u a r e d b u o v a n c v and s h e a r fr e q u e n c ie s g iv e n by

Trang 6

A thrce-dimcntional simu lơtio n o f thc. 35

a n d /; d e n o t e s th e d i s s i p a t i o n r a t e o f t u r b u l e n c e e n e r g y T h e d i s s i p a t i o n r a t e is

p a r a m e t e r i s e d acco rd in g to

k' 2

w h e r e cu is a c o n s t a n t d e t e r m i n e d by L\, = 0 1 8 8

AU t u r b u l e n c e t r a n s p o r t e q u a t io n s are s o l v e d vvith t h e s a m e h o r ỉz o n t a l

d if fu s io n c o e f fic ie n t Ả f Ị vvhich is th e s a m e a s t h e o n e u s e d in t h e e q u a t i o n s o f

t e m p e r a t u r e a n d s a lin it y

T h e e d d y c o e f fic ie n ts a r e t h e n e x p r e s s e d as

w h e r e vht Ảh a r e p r e sc r ib e d b a c k g r o u n d c o e f f i c i e n t s f Vi = / 0 7 [ m 2!s]; Ảfj = 7 0 5 Ị m 2/ s j

a n d s m, S), a r e u s u a lly r effed a s t h e s t a b ili t v íu n c t i o n s T h e ir e x p lic it íò rm s are

0 l() X ^ ( )0 2 2 9 q v

" ” 1+ 0 4 7 l aV + 0 0 2 7 5 a ỉ

0.177

U 0 4()3av

k *

o

O n e - e q u a t io n k - e p silo n tu r b u le n c e m od el is u s e d for p a r a m e t e r i s a t i o n for t h c

m ix in g l e n g t h and d i s s i p a t i o n ra te W h e n o n e - e q u a t i o n m o d e l i s c h o s e n , t h e

k-e q u a t io n is s t ill s o lv k-e d vvith c m o d k-e llk-e d a c c o r d in g to (2 2 1 ) w h i l k-e / is d k-e t k-e r m in k-e d

u s in g t h e ío r m u la tio n , in i t i a l l y p r o p o se d by B la c k a d a r (1 9 6 2 ), h a s t h e form

/ /> Ạ /a

H o r iz o n ta l d iffu sio n t e r m s a r e m e a n t to p a r a m e t e r i z e s u b g r id s c a l e p r o c e s s e s ,

in p ractice t h e h o r iz o n ta l d if f u s iv it v V ị ị a n d Ả ị ị a r e u s u a l l y r e q u ir e d to d a m p s m a ll sca le c o m p u t a t io n a l n o is e t h e y are t a k e n p r o p o r tio n a l to t h e h o r iz o n t a l griđ

sp a c in g s a n d t h e m a g n i t u d e o f t h e v e lo citv d e íb r m a t io n t e n s o r in a n a lo g y w ith

S m a g o r in3ky*s (1 9 6 3 ) p a r a m e t e r i s a t i o n

2.3 B o u n d a r V a n d i n i t i a l c o n d i t i o n s

C o a s t a l b o u n d a r ie s a re c o n s id e r e d as i m p r e g n a b l e w a lls T h is m e a n s h a t all

c u rrren ts, a d v e c tiv e a n d d if f u s iv e flu x es a r e s e t to zero

Trang 7

N g u y en Minh Hucềìn

ô x

õ y

O pen s e a (or riv er) b o u n d a r y c o n d itio n for th e 2-1) m o d e n e e d to be s u p p ỉ i e c d

for u a t w estern a n d eastern b o u n d a r ie s a n d for V a t S o u t h e r n a n d n o r t h e r r n

boundaries A selection can be made between different types of open b o u n d a r - y

co n d itio n s T h e y h a v e t h e form o f a r a d ia tio n c o n d itio n d e r iv e d u s i n g th e m e t h o d cof

c h a r a c t e r is t ic s [ H e d s tr o m 1 9 7 9 ), [Roed a n d C ooper, 1 9 8 7 ], [R u d d ick , 1 9 9 5 Ị] [Rancỉall J L e V e q u e 1997] T h is is b a s e d on th e in t e g r a t io n o f t h e e q u a t i o n s for t h i e

incoming an d o u t g o i n g R i e m a n n v a r ia b le s

< K K ) = ( Ũ ± cỉ ; V t c C ) (2 2 Í 9 )

3 N u m e r i c a l s i m u l a t i o n

T h e a i 111 o f t h e t e s t i s to s i m u l a t e th e e v o lu tio n o f a t id a lly m o d u la te d riveer

p lu m c u s i n g t h e f o ll o w i n g c o n d i t i o n s o f a b a s in w ith vvater d e p t h r a n g in g from 3im

in th e s h o r e li n e to 2 0 m in t h e o ffsh o r e b o u n d a ry T h e c o m j ) u t a t io n a l d o m a in , h a i s

th e form o f a r e c t a n g l e b a s i n e n c lo s e d by a Coastal (solicỉ) b o u n d a r y a n d th r e e opoĩn

s e a b o u n d a r ie s For c o n v e n i e n c e , t h e Coastal b o u n d a r y w ill be d e n o t e d b y th ìe

S outhern b o u n d a r y , t h e l a t t e r by th e vvestern, e a s t e r n c r o s s - s h o r e b o u n d a r i e s a n u l

th e n ortb ern a l o n g s h o r e b o u n d a r y T h e b a s in h a s a le n g t h o f 120 km , a w id th o f 410 kin, in th e Southe rn b o u n d a r y t h e r e is th o r iv er m outh s i t u a t e d in th e d i s t a n c e o f fí)0

km from th e vvestern b o u n d a r y and d is c h a r g e vvator to b a s in in sid o ono h a b ío r

c o n str u c ted by 2 g r o in s T h e h o r iz o n t a l r e s o lu t io n o f g r id is 5 0 0 m a n d 2 0 l e v e ỉ s aire used in th e v e r t ic a l T h e a r e a is rillecl in i t ia lly w ith sea v v a ter h a v i n g a unifor*m

s a lin it y o f 3 0 PSƯ

ỉ ỉ iittsei I

Km

4 0

30

20

10

Hi ve ì n u m ỉ h

F i g u r e 3 ỉ: The computational domain

Trang 8

A threc-dirncntional sirntỉlntion of thc. 37

Ticlal ĩo r c in g is i m p o s e d in t h e form of a f r i c t i o n l e s s K elv in w a v e with

ír e q u e n c v of Oj e n t e r i n g at th e vvcstern b o u n d a r y a n d p r o p a g a t i n g a lo n g th e const [V a n Rijn, 1 9 8 9 a n d Rudciick et al., 1995] T h e i n c o m i n g R ic m a n n varial>le,

s p e c i a l i z e d at t h e vvestern b o u n d a r v , t h e n ta k e s t h e form

R = u + cỊ = 2 c F |Mr = 2cA e ,v/c coso)~t , ( 3 1)

w h e r e th e C o r io lis fr e q u e n c y is e v a l u a t e d at a l a t i t u d e o f 2 0 , (0 is th e 0 tiđal

ír e q u e n c y , A = 0 8 m a n d ư , r, c are t h e d e p t h - i n t e g r a t e d a l o n g s h o r e c u r r e n t , th e

b a ro tro p ic vvave s p e e d a n d t h e s u r í a c e e l e v a t i o n T h e a m p ỉ i t u d e o f th o w a v e

d e c r e a s e s e x p o n e n t i a l l v vvith d i s t a n c e to th e c o a s t vvith a d e c a v s c a l e g iv e n hy th e

b a rotrop ic R o s s b y r a d i u s c / f - 120 km T h e a m p l i t u d e A e ' o f t h e h a rm o n ic

fu n c tio n Flíflr is storecỉ for e a c h o p e n b o u n d a r y n od e.

A zero n o r m a l graciien t c o n d it io n is s e l e c t e d at t h e e a s t e r n a n d n o rth orn

b ou ncỉaries, i.e.

~ ự / - c £ ) = 0

<\x

(3.2)

4 - ( V - c O = 0

r y

T h e l a t e r c o n d it io n is j u s t i f í e d bv t h e fact t h a t t h e vviđth o f t h e b a s in is m u ch

sm aller than t h e external Rossby radius c / f

S in ce t h e v a l u e o f Q is unknovvn at th e r iv e r m o u t h , t h e o p e n b o u n d a ry

concỉition a t t h e i n l e t is n o lo n g e r d e íìn e d in t e r m s o f t h e in c o m i n g R ie m a n n

v a r ia b le b u t by s p e c i f y i n g t h e c r o s s - s h o r e c o m p o n e n t o f t h e clepth in t c g r a te d

c u rren t T h is is g iv e n a s t h e s u m o f a r e s i d u a l v a l u e , r e p r e s e n t i n g t h e river cỉischarge, a n d a t id a l c o m p o n e n t

w

w h e r e Q,i = 1 0 0 0 m Vs is t h e r iv e r d is c h a r g e , vv = 5 0 0 m t h e w i d t h o f t h e i n l e t and Á,

= 0.6 m/s t h e a m p l i t u d e o f t h e t id a l c u r r e n t a t t h e m o u t h o f t h e riv er T h e p h a s e tp,

is d e te r m in c d bv

c 2

w here D = 2 6 0 k ĨTÌ so t h a t D, l c r e p r e s e n t s t h e t i m e t r a v e l l e d bv t h e K e lv in w a v e

from the w e r s t e r n b o u n d a r y to t h e r iv er m o u th O b s e r v a t i o n s in th o r iv er plu m e

sh ow th a t th e a lo n g s h o r e a n d c r o s s - s h o r e c o m p a n e n t a r e a n t i - p h a s e vvhich e x p la in s

th e use of t h e fa cto r 7t/ 2 [V a n Rijn, 1989].

Trang 9

38 N g u y en Minh Ị ỉ U an

III a d d itio n to thi' p r e v i o u s c o n d it io n s for th e 2 -D m od e, o p en b o u n d a r y

c o n d it io n s h a v e to be i m p o s e đ d u r in g th e fin al run for t h e h o r iz o n t a l v e lo c ity

d e v i a t i o n s (u\ V9 a n d the s a l i n i t y s.

A t th e o p e n s e a b o u n d a r i e s a zero n orm a l g r a d ie n t c o n d it io n is t a k e n for all

q u a n t i t i e s In th e c a s e o f s a l i n i t y th is p ro ced u re is a r e a s o n a b l e a p p r o x im a tio n

s in c e th e p lu m e n e v e r i n t e r s e c t s th e vvestern and n o rth orn b o u n d a r y w h ile th e cro ss-b ou n clary g r a d ie n t i s m u ch s m n lle r th a n t h e a lo n g b o u n d a r y g r a d ie n t a t th e

e a s t e r n b o u n d a r y

T h e d e í a u l t c o n d i t i o n s a r e no lo n g er a p p lic a b le a t th e riv er m o u th w h e r e u'

a n d s a r e s p e c ií ìe d in t h e form o f a tvvo-layer s tr a tific a tio n

v ’ = - 0 2 [m s ‘] i f - H < 2 < - 5, ( 3.5)

vvhere ổ = 5 m is t h e s p e c i í ì e d d e p th o f th e p lu m e la y e r a t t h e m o u th In t h i s vvay

fresh w a t e r is r e le a s e d t h r o u g h th e su rfa ce la y e r vvhereas s a l t i c r s e a w a t e r flow s

in to t h e e s t u a r y t h r o u g h t h e b o tto m layer A zero g r a d ie n t c o n d it io n is a p p lie d for

s a l i n i t y in th e b o tto m la y e r

4 D i s c u s s i o n

A lth o u g h th e d e v e l o p e d p rogram is a b le to e x a m i n e th e role of d if fe r e n t

p h y s ic a l ío r c in g n i e c h a n i s m ( b a t h y m e t r y , tid e s , w in d , w a v e ) on t h e p lu m e s tr u c tu r e ,

th o in t e n t i o n h e r e is to t e s t s o m e o f th e a b o v e -m e n tio n e d fo rcin g a n d th e role o f th e

S m a g o r iỉ is k y í o r m u l a t io n for h o r iz o n ta l d iffu sio n and th e u p w in d s c h e m e for th e advort.ion o f m o m e n t u m

F ỉg u res 4.1 Su rface d is tr ib u tio n o f current and sa lin ity after õOh s im u la tio n (fmal run)

F ig u r e s 4.1 - 4 5 c l e a r l y sh o w how th e p lu m e e v o lv e s d u r in g a tidal cycle At

th o t im e w h e n th e a l o n g s h o r e c u r r e n t r e v c r s e s s ig n a n d th o o u t flo w roa ch es its

Trang 10

A three-dimentional simulation of the.

20

10

m a x im u m , a nevv blob o f ír csh w a te r e n t e r s th e b a s in m o v in g seavvard s (ỈMgure

á 1 ì

xO.Skm *°

20

F ig u re 4 3 : S u r ía c e distrib u tion o f c u r r e n t a n d s a lin it y a fter 54h s im u la t io n

F ig u res 4.2 S u rfa ce distribu tion o fc u r r e n t and s a lin it y a fter Õ2h s im u la t io n

A s t h e e a s t w a r d d ir e cted tid al w a v e b e c o m e s s t r o n g e r , t h e fr e sh vvater p atch

is d e fle c te d to th e r ig h t (F ig u r e 4 3 ).

x0.5km

D u r in g t h i s p h a s e of th e tid e both th e b u lg e a n d th e C o a s t a l p lu m e expancl

s e a w a r d s W h e n t h e t id a l c u r r e n t r e v e r s e s s i g n a g a i n a n d t u r n s to t h e w e s t , th e

c u r r e n t i n s id e th e p l u m e is first s o u t h e a s t w a r d s p u s h i n g t h e b u lg e t o w a r d s th e

c o a s t (F ỉg u r e 4.4).

Ngày đăng: 18/03/2021, 10:29

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w