1. Trang chủ
  2. » Luận Văn - Báo Cáo

Synthesis and optical properties of red blue emitting sr2mgsi2o7 eu 3 + eu 2+ phosphors for white led

5 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 1,28 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Original articleSynthesis and optical properties of red/blue-emitting a Advanced Institute for Science and Technology AIST, Hanoi University of Science and Technology HUST, 01 Dai Co Vie

Trang 1

Original article

Synthesis and optical properties of red/blue-emitting

a Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST), 01 Dai Co Viet Street, Hanoi 10000, Viet Nam

b National Economics University (NEU), No 207 Giai Phong Street, Hanoi 10000, Viet Nam

a r t i c l e i n f o

Article history:

Received 8 June 2016

Received in revised form

12 June 2016

Accepted 12 June 2016

Available online 18 June 2016

Keywords:

Sr 2 MgSi 2 O 7 :Eu3þ/Eu2þ

Photoluminescence

Red and blue emitting phosphor

a b s t r a c t Phosphor-converted white light emitting diodes (white LEDs) have received great attention in recent years since they have several excellent features such as high lumen output, low power consumption, long lifetime and environmentally friendly In this work, we report the co-precipitation synthesis of red/blue

Sr2MgSi2O7:Eu3þ/Eu2þphosphors with various Eu doping concentration The results show that the ob-tained Sr2MgSi2O7:Eu3þ/Eu2þphosphors have good crystallinity and emit strong red (Sr2MgSi2O7:Eu3þ) and blue (Sr2MgSi2O7:Eu2þ) emissions under near UV light excitation The sharp emission peaks at 577,

590, 612, 653, and 701 nm corresponded to the typical5D0/7Fj(j¼ 0,1,2,3,4) transitions of Eu3þ, and the blue emission peaking at 460 nm is attributed to the typical 4f65d1-4f7transition of Eu2þin the same

Sr2MgSi2O7host lattice Both phosphors can be well excited in the wavelength range of 260e400 nm where the near UV-LED is well matched The above results suggest that the Sr2MgSi2O7:Eu3þ/Eu2þ phosphors are promising red/blue-emitting phosphors for the application in near UV pumped phosphor-converted white LEDs

© 2016 Publishing services by Elsevier B.V on behalf of Vietnam National University, Hanoi This is an

open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1 Introduction

Phosphors are widely used in solid-state lighting, especially for

the phosphor-converted light emitting diode (white LED) in which

yellow light-emitting phosphor (such as YAG:Ce3þ) are pumped by

GaN chips to generate white light[1] On the one side, the current

white LEDs show several advantages over incandescent and

fluo-rescent lamps including low operating voltage, low energy

con-sumption, long lifetime… However, on the other side, this kind of

white LED shows relatively low color-rendering index (CRI), and

high color temperature due to lack of a red-light emitting

compo-nent [2,3] So far, one solution to these problems has been to

fabricate a white LED with high color rendering by combining red,

green and blue emitting tricolor phosphors pumped by a near

UV-LED[4,5] Therefore, extensive efforts have been made to develop

new blue and red phosphors with light luminous efficiency, good

color, and high CRI[6]

Recently, the alkaline earth silicates based-phosphors (alker-manite phosphors) have been reported as one of the most essential luminescent materials due to their excellent thermal and chemical stability and high brightness Particularly, Sr2MgSi2O7 is a good candidate for UV-LED application since it has a rigid tetragonal structure and strong absorption band in UV region[7,8] It is well known that Europium (Eu) is the most common rare earth to be used as an activator in phosphors Eu3þion is a preferable activator for red phosphors with sharp emission peaks in the red region (from 570 to 700 nm) caused by the5D0/7Fj(J¼ 0, 1, 2, 3, 4) transitions of the trivalent state, while Eu2þis the most frequently used activator in the blue phosphors and its emission usually consist of a broad band due to transitions from the 4f65d to the 4f7 ground state Additionally, Eu2þion can emit light from the UV to the infrared with broad band emitting luminescence on different host matrices since the involved 5d orbital of Eu2þion is external and strongly influenced by the crystal field[9,10]

Until now, the phosphors based on Sr2MgSi2O7host lattice were prepared by different methods such as solid-state reaction, hy-drothermal, solegel methods or combustion processing with ul-trasonic dispersion technique [11e14] Among the various synthesis methods, the co-precipitation method is known to

* Corresponding author Tel.: þ84 4 36230435; fax: þ84 4 36230293.

E-mail address: huy.phamthanh@hust.edu.vn (P.T Huy).

Peer review under responsibility of Vietnam National University, Hanoi.

Contents lists available atScienceDirect Journal of Science: Advanced Materials and Devices

j o u r n a l h o m e p a g e : w w w e l s e v i e r c o m / l o c a t e / j s a m d

http://dx.doi.org/10.1016/j.jsamd.2016.06.009

2468-2179/© 2016 Publishing services by Elsevier B.V on behalf of Vietnam National University, Hanoi This is an open access article under the CC BY license ( http://

Trang 2

produce phosphor powders with uniform, narrow size distribution,

and homogeneous distribution of the activator ions [15] It is

important to note that in most of the previous research, to

syn-thesis the Sr2MgSi2O7:Euþ2phosphor, the precursor powders were

normal sintered in reduced gas environment in a one-step

syn-thesis process, therefore only the blue emitting phosphors can be

obtained

In this work, we present the results of our study on red/blue

phosphors based on Eu-doped Sr2MgSi2O7 prepared by

co-precipitation method Initially, Eu3þ-doped phosphor was

synthe-sized as a red emitting phosphor, and its structure and luminescent

properties were investigated as a function of the sintering

tem-perature Lately, Eu2þdoped phosphor was obtained by reducing

the corresponding Eu3þ phosphor in forming gas environment

Moreover, the influence of Eu3 þ doping concentration on the

luminescent properties of the phosphors was also investigated

2 Experimental

The Sr2MgSi2O7:Eu3þ phosphor was synthesized by a

co-precipitation reaction In this reaction, nitrate salts Sr(NO3)2,

Mg(NO3)2$6H2O, tetraethylorthosilicate (C2H5O)4Si (TEOS), and

europium oxide Eu2O3were used as precursors All these chemicals

were of analytic grade The raw materials were weighed according

to the nominal composition of Sr2-xMgSi2O7:xEu3þ(x¼ 0.02, 0.03,

and 0.04) Sr(NO3)2.4H2O and Mg(NO3)2$6H2O were mixed in

distilled water A stoichiometric amount of TEOS and Eu2O3was

also dissolved in ethanol and HNO3, respectively The solutions

were stirred until the solution became transparent, after which

they were mixed and continuously stirred for 3 h Subsequently, an

appropriate amount of NH4OH was added to the solution to enable

precipitation The precipitate and solution were continuously

stir-red to obtain a white viscous gel Then, centrifugal force was

applied to allow the resulting precursor to be separated The

separated precursor was washed with DI water for several times

After drying at 200C for 24 h, the dry powder was calcined in air at

various temperatures for 3 h to receive the Sr2-xMgSi2O7:xEu3þ

phosphors To produce the Sr2-xMgSi2O7:xEu2þ phosphors, the

corresponding Sr2-xMgSi2O7:xEu3þphosphor was subjected to ion

reduction in the mixture of H2/N2(10%/90%) gas at different

tem-peratures for 2 h

The phase purity of the phosphors was identified by X-ray

diffraction (XRD) pattern Measurements were carried out on a D8/

Advance-Bruker diffractometer with CuKaradiation (l¼ 1.5403 Å)

The scan rate was kept at 1 s/step at a scattering angle range of

20e70 The Raman spectra were recorded on a Horiba Jobin Yvon

LabRAM HR-800 spectrometer using HeeNe laser (632.8 nm) with

a power density of 215 W/cm2 A high-resolution mode of 1.2 cm1

was used Morphology was taken with a JSM-7600F (Jeol Co., Japan)

field emission scanning electron microscope (FESEM) PL and PLE

were measured on a NANO LOG spectrofluorometer PL and PLE

spectra were obtained by using a 450 W xenon light source with a

spectral resolution of about 1 nm

3 Results and discussion

Fig 1shows XRD patterns of the product sintered at 900, 1100,

1200, and 1300C for 3 h

It can be seen that until temperature of 1200 C, the main

crystalline phase in the powder is Si2SiO4, beside the Sr2MgSi2O7

and Sr3MgSi2O8 phases with smaller portion Contents of the

desired Sr2MgSi2O7 phase and the secondary Sr3MgSi2O8 phase

increase with increasing the sintering temperature At the

tem-perature of 1300C, intensity of the diffraction peaks related to the

SrSiO phase decreased abruptly, in contrast to the strong increase

of the Sr2MgSi2O7phase These results indicate that the presence and dominance of the Sr2MgSi2O7phase can only be obtained in the sample sintered at 1300C Our results are similar to those reported

by Kwon et al., in which the Sr2SiO4 phase in the Sr2MgSi2O7

phosphor (synthesized by a conventional solid-state reaction method) disappeared only after sintering at 1300C or higher[16] The XRD patternFig 1also confirms the tetragonal structure of the

Sr2MgSi2O7host lattice The main phase Sr2MgSi2O7has tetragonal crystal structure Sr2þion in this crystal structure occupies a unique position (position symmetry Cs) with eight neighboring O2ions and the SreO distance is 2.662 Å in average When Eu is doped into

Sr2MgSi2O7, Eu ions are expected to replace the position of Sr2þin the crystal network because of the excellent compatibility ionic radius of Eu3þand Sr2þ, 1.25 and 1.26 Å, respectively[17e19]

To evaluate the possibility of replacing the Eu3þ ions on the position of Sr ions in the host lattice, Raman spectra measurement

of the doped 4% Eu3þand undoped Sr2MgSi2O7host were carried out The Raman spectra taken at room temperature are shown in Fig 2 For the host lattice (curve a), Raman peaks are observed at

901, 652, 315, 220, 201 and 153 cm1 The peaks correspond to the stretching vibrations of the SieO and SieSi bonds of the Si2O7 group[20] For the doped Sr2MgSi2O7:4%Eu3þsample, the Raman spectrum (curve b) is similar to that of the undoped Sr2MgSi2O7

sample, no other peaks were found This result implies that the

Eu3þdopant ion was not substituted on the Si4þsite, and did not change the unite cell volume and SiOSi angle, instead they were incorporated in to host lattice by replacing the Sr2þsites

The morphology of the phosphors was characterized by FESEM Fig 3show FESEM images of the as-received phosphor (dry pow-der) (a) and the Sr2MgSi2O7:Eu3þphosphor sintered at 1300C for

3 h (b) The dry powder show clusters of particles with variety shapes and sizes, whereas the Sr2MgSi2O7:Eu3þphosphor exhibits needle-like shape particles with an average length of about 1 micron The chemical composition of the Sr2MgSi2O7:3%Eu3þ phosphor has been measured using energy dispersive X-ray spec-troscopy (EDS) The result of the EDS analysis is shown inFig 3(c) which is representing the composition of the phosphor powder studies

Fig 4 illustrates the photoluminescence (PL) spectra of

Sr2MgSi2O7:4%Eu3þ phosphor samples sintered at different tem-peratures in the range of 900e1300C Under the near UV

excita-tion of 360 nm, a broad blue emission band centered around

430e470 nm and several sharp lines in the orangeered region

Fig 1 XRD patterns of Sr 2 MgSi 2 O 7 :Eu3þphosphors sintered at 900, 1100, 1200, and

1300C for 3 h Closed square, closed circle (grey color) and closed circle (red color) denote XRD peak positions of Sr 2 MgSi 2 O 7 , Sr 2 SiO 4 , Sr 3 MgSi 2 O 8 , respectively T.T Hao Tam et al / Journal of Science: Advanced Materials and Devices 1 (2016) 204e208 205

Trang 3

peaking at about 577, 590, 612, 653, and 701 nm The sharp red

emission lines should be ascribed to the transitions within the 4f6

configuration of Eu3þ These lines corresponds to the5D0 /7F0,

5D0/7F1,5D0/7F2,5D0/7F3and5D0/7F4transitions of Eu3þ,

respectively[21] Here, the emission line at 612 nm is attributed to

the electric dipole transition (5D0 / 7F2), while the emission

around 590 nm is assigned to the magnetic dipole transition

(5D0/7F1), which is sensitive to site symmetry According to the

parity selection rule, when the Eu3þions are located at the site with

an inversion symmetric center, the 5D0 / 7F1 magnetic dipole

transition is permitted, which results in orangeered emission

around 590 nm In the other case, if the Eu3þions located at the site

without an inversion symmetric center, because the opposite parity

5d configuration is mixed into 4f configuration, the parity selection

rule is able to lifted, and fef forbidden transition is partially

allowed, the hypersensitive5D0/7F2electric dipole transition will

be permitted, which results in red emission around 612 nm

[13,21,22] Thus, the observation of the strongest emission peak at

612 nm in our phosphor may indicate that Eu3þions mainly occupy

non-inversion symmetric center in the host lattice For the broad

blue emission band, it is known that Eu2þpresents a broad

emis-sion band peaking at around 460 nm due to the 4f65d1 to 4f7

transition of Eu2þ(8S7/2-7Fj, j¼ 0, 1, 2, 3, and 4) Since no reduction

process has been carried out with the phosphor, it is quite possible

that during the high temperature sintering, a small amount of Eu3þ

ions were reduced to Eu2þ ions that leads to the blue emission

[23e26] Longer sintering time and higher temperature can

enhance this ion transformation It can also be seen fromFig 4that

while the PL intensity of the red emissions increased with

increasing sintering temperature, the peak position and the shape

of the blue band change arbitrary with increasing temperature

Since the blue emission bands related to Eu2þions is sensitive to

the host lattice environment, the change of the blue emission band

with sintering temperature may indicate the change of the

crys-talline phases in the sample as observed from XRD results In our

opinion, the increase of the PL intensity of the red emission is

related to the higher content of the Sr2MgSi2O7 phase upon

increasing temperature from 900 to 1300C

Fig 5shows the excitation spectrum (PLE monitored at 612 nm)

of the Sr2MgSi2O7:Eu3þphosphor The PLE spectrum covers a wide region between 350 and 600 nm revealing that the phosphor can be excited by near UV at 360, 381, 393 and 463 nm Such excitation wavelengths are well matched with near UV-LED excitation wavelength, indicating a great potential for white LED application Further, the strong excitation peak at 463 nm points out that the

Sr2MgSi2O7:Eu3þphosphor can also be used in the blue LED pum-ped white LED

To investigate the effect of Eu3þ doping concentration on PL intensity of Sr2MgSi2O7phosphors synthesized by co-precipitation method, the emission spectra of the phosphors at various Eu3þ concentrations (x¼ 0.02, 0.03, and 0.04) are presented inFig 6 The emission intensity increases until x¼ 0.03 and then decreases

as a result of enhanced dipoleedipole interaction This optimal

Eu3þ concentration is lower than that reported in the literature [17]

Fig 2 Raman spectra of the Sr 2 MgSi 2 O 7 (a) and Eu3þ-doped Sr 2 MgSi 2 O 7 (b) phosphors

sintered at 1300C in air ambient for 3 h.

Fig 3 FESEM images of the as-received powder (dry powder) (a) and the

Sr 2 MgSi 2 O 7 :3%Eu3þphosphor powder sintered at 1300  C in air ambient for 3 h (b) and EDS spectrum (c) of the Sr 2 MgSi 2 O 7 :3%Eu3þphosphor after sintering.

Trang 4

The PL and PLE spectra of Sr2MgSi2O7:Eu2þphosphors sintered

at 1300C for 3 h and reduced at 1300 for 2 h are shown inFig 7

The PL spectra show a broad emission band in the blue peaking at

462 nm under the excitation wavelength of 360 nm This emission

is due to the 4f65d1e4f7transition of Eu2þions in the host lattice

Also, the PLE spectrum monitored at 460 nm is shown inFig 7 It is

shown that the blue emission band can be efficiently excited by

both UV and near UV excitation source from 260 to 415 nm Thus,

the Sr2MgSi2O7:Eu2þphosphor obtained in this work matches well

the excitation wavelength of the near UV LED chip

4 Conclusions

Sr2MgSi2O7:Eu3þ/Eu2þ phosphors were prepared by the

co-precipitation method followed by sintering at 1300C for 3 h in

air ambient (Sr2MgSi2O7:Eu3þ) and reduced at 1300C for 2 h in

forming gas environment (Sr2MgSi2O7:Eu2þ) The Sr2MgSi2O7:Eu3þ

phosphor shows strong red emission peaking at 612 nm that can be

excited by both near UV (360, 381, 393 nm) and blue (463 nm) LED

The Sr2MgSi2O7:Eu2þphosphor emits strong blue light peaking at

462 nm and can be excited by both UV and near UV-LED These results suggested that the Sr2MgSi2O7:Eu3þ/Eu2þphosphors have high potential for phosphor-converted white LED application Acknowledgments

This work was supported by the National Program on Technol-ogy Innovation, project number DM.06.DN/13 This paper is dedi-cated to PETER BROMMERe a former physicist of the University of Amsterdam and good friend of the Vietnamese physicists References

[1] S Lee, S Seo, Optimization of yttrium aluminum garnet: Ce3þphosphors for white light-emitting diodes by combinatorial chemistry method,

J Electrochem Soc 149 (2002) J85eJ88, http://dx.doi.org/10.1149/1.1511755 [2] Y.X Pan, M.M Wu, Q.J Su, Tailored photoluminescence of YAG: Ce3þ phos-phor through various methods, J Phys Chem Solids 65 (2004) 845e850,

http://dx.doi.org/10.1016/j.jpcs.2003.08.018 [3] H.S Jang, W.B Im, D.C Lee, D.C Jeo, S.S Kim, Enhancement of red spectral

Fig 4 Photoluminescence spectra of Sr 2 MgSi 2 O 7 :4%Eu3þpowders sintered at different

temperatures from 900 to 1300C in air ambient for 3 h under 360 nm near UV

excitation.

Fig 5 Excitation spectrum (PLE) of Sr 2 MgSi 2 O 7 :Eu3þphosphor (monitor for 612 nm

emission line).

Fig 6 PL spectra of Sr 2 MgSi 2 O 7 :xEu3þphosphors with different Eu3þdoping con-centration (x ¼ 0.02, 0.03 and 0.04) under optimum excitation wavelength of 393 nm.

Fig 7 PL (lex ¼ 360 nm) and PLE spectra of Sr 2 MgSi 2 O 7 :Eu2þphosphor sintered at

1300  C in air ambient for 3 h and reduced at 1300  C for 2 h in forming gas of 10%H 2 / 90%N 2 environment.

T.T Hao Tam et al / Journal of Science: Advanced Materials and Devices 1 (2016) 204e208 207

Trang 5

substitution for the application to white LEDs, J Lumin 126 (2007) 371e377,

http://dx.doi.org/10.1016/j.jlumin.2006.08.093

[4] H.L Liu, D.W He, F Shen, Luminescence properties of green-emitting

phos-phor(Ba 1-x Sr x )SiO 4 :Eu2þfor white LEDS, J Rare Earths 24 (2006) 121e124.

http://dx.doi.org/1002-0721(2006)01-0121-04

[5] K.Y Jung, J.H Kim, Y.C Kang, Luminescence enhancement of Eu-doped

cal-cium magnesium silicate blue phosphor for UV-LED application, J Lumin 129

(2009) 615e619, http://dx.doi.org/10.1016/j.jlumin.2009.01.001

[6] S.K Jong, K.K Ae, H.P Yun, Luminescent and thermal properties of full-color

emitting X 3 MgSi 2 O 8 :Eu2þ,Mn2þ(X ¼ Ba, Sr, Ca) phosphors for white LED,

J Lumin 122e123 (2007) 583e586, http://dx.doi.org/10.1016/

j.jlumin.2006.01.231

[7] J.K Park, M.A Lim, C.H Kim, H.D Park, White light-emitting diodes of

GaN-based Sr 2 SiO 4 :Eu and the luminescent properties, Appl Phys Lett 82 (2003)

683e685, http://dx.doi.org/10.1063/1.1544055

[8] J.K Sheu, S.J Chang, C.H Kuo, Y.K Su, L.W Wu, Y.C Lin, W.C Lai, J.M Tsai,

G.C Chi, R.K Wu, White-light emission from near UV InGaN-GaN LED chip

precoated with blue/green/red phosphors, IEEE Photonics Technol Lett 15

(2003) 18e20, http://dx.doi.org/10.1109/LPT.2002.805852

[9] T Justel, H Nikol, C Ronda, New development in the field of luminescence

materials for lighting and displays, Angew Chem Int Ed 37 (1998)

3084e3103 http://dx.doi.org/10.1002/(SICI)1521-3773(19981204)37:

22<3084::AID-ANIE3084>3.0.CO;2-W

[10] W.B Im, J.H Kang, D.C Lee, S Lee, D.Y Jeon, Y.C Kang, K.Y Jung, Origin of PL

intensity increase of CaMgSi 2 O 6 :Eu2þphosphor after baking process for PDPs

application, Solid State Commun 133 (2005) 197e201, http://dx.doi.org/

10.1016/j.ssc.2004.10.016

[11] M Zhang, J Wang, W Ding, Q Zhang, Q Su, Luminescence properties of

M 2 MgSi 2 O 7 :Eu2þ(M ¼ Ca, Sr) phosphors and their effects on yellow and blue

LEDs for solid-state lighting, Opt Mater 30 (2007) 571e578, http://

dx.doi.org/10.1016/j.optmat.2007.01.008

[12] Y Xu, D Chen, Combustion synthesis and photoluminescence of Sr 2 MgSi 2 O 7 :

Eu,Dy long lasting phosphor nanoparticles, Ceram Int 34 (2008) 2117e2120,

http://dx.doi.org/10.1016/j.ceramint.2007.08.012

[13] Y Zhai, Z You, Y Liu, Y Sun, Q Ji, Properties of red-emitting phosphors

Sr 2 MgSi 2 O 7 :Eu3þprepared by gel-combustion method assisted by microwave,

J Rare Earth 30 (2012) 114e117, http://dx.doi.org/10.1016/S1002-0721(12)

60005-2

[14] J Wan, Y Yao, G Tang, Hydrothermal synthesis and size-enhanced

chroma-ticity of Sr 2 ZnSi 2 O 7 :Eu3þ nanoparticles, J Nanosci Nanotechnol 8 (2008)

1449e1453, http://dx.doi.org/10.1166/jnn.2008.364

[15] Q.Y Zhang, X.Y Huang, Recent progress in quantum cutting phosphors, Prog Mater Sci 55 (2010) 353e427, http://dx.doi.org/10.1016/ j.pmatsci.2009.10.001

[16] K.H Kwon, W.B Im, D.Y Jeon, Energy transfer in Sr 2 MgSi 2 O 7 :Eu2þphosphors

in nano scale and their application to solid state lighting with excellent color rendering, J Nanosci Nanotechnol 13 (2013) 4079e4083, http://dx.doi.org/ 10.1166/jnn.2013.6999

[17] H Wu, Y Hu, Y Wang, F Kang, Z Mou, Investigation on Eu3þdoped Sr 2 MgSi 2 O 7

red-emitting phosphors for white-light-emitting diodes, Opt Laser Technol 43 (2011) 1104e1110, http://dx.doi.org/10.1016/j.optlastec.2011.02.006 [18] T Laamanen, Defects in Persistent Luminescent Materials (Ph.D thesis), University of Turku, 2011

[19] J H€ols€a, J Niittykoski, M Kirm, T Laamanen, M Lastusaari, P Novak, J Raud, Synchrotron radiation study of the M 2 MgSi 2 O 7 :Eu2þ, persistent luminescence materials, ECS Trans 6 (2008) 1e10, http://dx.doi.org/10.1149/1.2938743 [20] J Hanuza, M Ptak, M Maczka, K Hermanowicz, J Lorenc, A.A Kaminskii, Polarized IR and Raman spectra of Ca 2 MgSi 2 O 7 , Ca 2 ZnSi 2 O 7 and Sr 2 MgSi 2 O 7

single crystals: temperature-dependent studies of commensurate to incom-mensurate and incomincom-mensurate to normal phase transitions, J Solid State Chem 191 (2012) 90e101, http://dx.doi.org/10.1016/j.jssc.2012.02.051 [21] S Yao, L Xue, Y Yan, Investigation of the electronic structure and photo-luminescence properties of Eu3þin Sr 2 Mg 1-x Zn x Si 2 O 7 (0  x  1), J Electroceram.

26 (2011) 112e115, http://dx.doi.org/10.1007/s11434-011-4946-5 [22] T Kano, “Luminescence center of rare-earth ions,” in Phosphor Handbook, W.

M Yen, S Shionoya, and H Yamamoto, Eds.,chapter 3.3, CRC Press, Boca Raton, Fla, USA, 2206.

[23] Z Xia, J Sun, L Liao, H Du, Phase structure and temperature dependent luminescence properties of Sr 2 LiSiO 4 F:Eu2þand Sr 2 MgSi 2 O 7 :Eu2þphosphors,

J Rare Earths 28 (2010) 874e877, http://dx.doi.org/10.1016/S1002-0721(09) 60228-3

[24] A.A Setlur, A.M Srivastava, H.L Pham, Charge creation, trapping, and long phosphorescence in Sr 2 MgSi 2 O 7 :Eu2þ,RE3þ, J Appl Phys 103 (2008) http:// dx.doi.org/10.1063/1.2844473 , 053513.

[25] H Zhang, N Terasaki, H Yamada, C.N Xu, Blue light emission from stress-activated Sr 2 MgSi 2 O 7 :Eu, Int J Mod Phy B 23 (2009) 1028e1033, http:// dx.doi.org/10.1142/S0217979209060415

[26] F.B Hermi, H Jukka, H.J Jorma, Optical energy storage properties of

Sr 2 MgSi 2 O 7 :Eu2þ, R3þpersistent luminescence materials, Therm Anal Calo-rim 105 (2011) 657e662, http://dx.doi.org/10.1007/s10973-011-1403-2

Ngày đăng: 17/03/2021, 20:24

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm