1. Trang chủ
  2. » Luận Văn - Báo Cáo

Regulatory changes and long run relationships of the EMU sovereign debt markets implications for future policy framework

14 19 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 1,88 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Erdinc Akyildirima,b,g, Shaen Corbetc,h, Duc Khuong Nguyend,e,∗, Ahmet Sensoyf a Department of Banking and Finance, University of Zurich, Zurich, Switzerland b Department of Mathematics,

Trang 1

Erdinc Akyildirima,b,g, Shaen Corbetc,h, Duc Khuong Nguyend,e,∗, Ahmet Sensoyf

a Department of Banking and Finance, University of Zurich, Zurich, Switzerland

b Department of Mathematics, ETH, Zurich, Switzerland

c DCU Business School, Dublin City University, Dublin 9, Ireland

d IPAG Business School, Paris, France

e International School, Vietnam National University, Hanoi, Viet Nam

f Faculty of Business Administration, Bilkent University, Ankara, 06800, Turkey

g Center for Financial Application and Research, Bo˘gazic¸ i University, Istanbul, Turkey

h School of Accounting, Finance and Economics, University of Waikato, New Zealand

Article history:

Received 11 July 2019

Received in revised form 4 December 2019

Accepted 31 March 2020

Available online 23 May 2020

JEL classification:

C58

F36

G01

G18

Keywords:

DCC-MIDAS

European Union

Sovereign bonds

Regulation

Financial crisis

Weestimatethetime-varyinglong-runcorrelationsofEuropeansovereignbondmarketstoidentify specificeffectsthatareattributedtochangingEuropeanregulatoryandpoliticaldynamicsoverthelast twentyyears.OurempiricalresultsfromusingtheDCC-MIDASmethodologyindicatethatregulatory changesinEuropehavecreatedsignificantandnegativeimpactonthelong-runcorrelationswithinthe monthwheretheregulationisdecidedtobetakenintoaction.Thisimpactstillremainsinthefollowing monthsandrobustwithrespecttothetrendcomponentofthelong-runcorrelations.Adirectimplication

isthatthemoreregulationstheEUattemptstoputinplace,thelowerthelong-runconvergenceprocessof sovereignbondmarketsis.Wethenanalysethestructuralshiftsinthelong-runcorrelationdynamicswith penalizedcontrastsmethodologyandtrytofindoutthereasonsoftheseseverechanges.Accordingly, someofthestructuralshiftsoverlapwiththedatesofalimitednumberofregulatorychanges,inaddition

tothemajorglobaleconomicandpoliticalevents

©2020ElsevierInc.Allrightsreserved

TheEuropeanUnionhaswitnessedsubstantialstructural,

reg-ulatoryandpoliticalchanges inthepasttwentyyearssincethe

introductionoftheeuro.Muchresearchhasfocusedonthe

devel-opmentofabroadconvergenceintheyieldsofEuropeanbonds

afterthedevelopmentofastrongmonetaryunion(Codognoetal.,

2003; Kim etal., 2006; Christiansen,2007).This is particularly

important due to the broad diversification effects that existed

throughthecreationofsuchacohortofsovereignstates,each

offer-ingquiteuniquestrengthsandskillstotheunion,withthesmallest

countriesseekingaddedeconomicsecuritythroughdiversification,

sharedskills,experiences, financingsources,and thereinforced

∗ Corresponding author at: IPAG Business School, 184 Boulevard Saint-Germain,

75006 Paris, France.

E-mail address: duc.nguyen@ipag.fr (D.K Nguyen).

bargainingstrengththatwasprovidedthroughsuchalarge num-berofcountrieswhennegotiatinginternationaltradeagreements However,thesecountriesalsoincorporatedbroadstructuralissues towardstheEuropeanMonetaryUnion(EMU),manifestinginwhat canonlybedescribedasoneoftheworstsovereigndebtcrises tak-ingplaceincountriessuchasGreece,Ireland,Portugal,Italy,Cyprus andSpain.Amongthesecountries,bothGreeceandIreland neces-sitatedthird-partyfinancialsupportandinterventionduetothe deep-rootednatureoftheirsovereignbankingcrises.1The devel-opmentoftheEMUhasalsowithdrawnbothmonetaryandmany

1 Specifically focusing on the Irish economic collapse, Corbet (2016) discusses the broad regulatory deficiency that existed in Ireland during the generation of the

‘Celtic Tiger,’ a period synonymous with the rapid expansion of the Irish economy, where the actions of its regulators and policy makers undoubtedly generated not only a catalyst to financial ruin, but also an incubator to strengthen its severity Banks were found to be firmly leveraged towards the Irish property market and the role

of leverage in financial markets created mispricing, to which the basic principles of https://doi.org/10.1016/j.irle.2020.105907

0144-8188/© 2020 Elsevier Inc All rights reserved.

Trang 2

mit-igatedandalleviated.Thiswasevidentintheeconomiccollapse

ofthecountriesdenotedas‘PIIGS’asmonetarypolicyhadtobe

tailoredtotheneedsoftheEMUratherthantheneedsofspecific

nations

TheregulatoryresponsesmadebytheEuropeanUnionhave

beenquitestrongin thepost-crisis era.Followingtheoutbreak

ofthefinancialcrisis,Europeanregulatoryreformshavefocused

onfourkeyareas:(1)thestrengtheningoffinancialsupervision;

(2)thecreationoftoolstosupportbankrecoveryandresolution;

(3)thecreationofamoreeffectivedepositprotectionsystem;and

(4)thecreationofanimprovedregulatoryframeworkforbanks,

insurancecompanies, securitiesmarkets and othersectors We

mustfocusonanalysingastohowthesereformshavemadethe

financialsystemmorestableandresilientandastowhetherthey

haveinfluencedtheperceptionsofbondtradersasmeasuredbythe

yieldsofsovereigndebt.Suchregulatoryrestructuringnecessitates

re-evaluationofthemanywaysinwhichEuropeancorporations

interact,particularlycross-borderentitiesthatarepartofthesame

institution.Suchreformsintroducedafterthecrisisalsoneedto

bemonitoredtocheckwhethertheyaredeliveringintended

out-comesandtoassesswhetherthenewruleshaveanyunintended

consequences.AppendixAprovidesadetailedoverviewofthekey

completedreformsthathavebeenintroducedalongwiththe

ratio-nalesupportingtheirintroduction

Someoftheearliestcommissionedandnowcompleted

finan-cialreformsincludethoserelatedtotherisk-basedprudentialand

solvencyrulesforinsurers(SolvencyII),AIFMD,CRDIII,the

estab-lishmentoftheEuropeanSupervisoryAuthority,depositguarantee

schemes,derivativereformthroughEMIR,thecreationofthe

Sin-gleEuroPaymentsArea(SEPA),MIFID,andawiderangeofmarket

abuse and transparency reforms among others.2 The European

Commissiondevelopedsuchreformsthroughtheestablishmentof

anumberofpolicyadvisingexpertgroups,3representing

consulta-tivebodiessetupbytheCommissiontoprovideadvicesinrelation

tothepreparationoflegislativeactsandpolicyinitiativesusually

composedofexpertsappointedbyEUgovernments

Asfarasthesovereigndebtcrisisisconcerned,acommon

wis-domisthattheregulatorychangesaffectthedynamicsofsovereign

risksandthewaysthesovereignbondmarketsco-moveovertime

Inthispaper,wegiveacloselooktothisissuebyconsideringabroad

rangeoftheEuropeanregulatoryreformsaspotentialsourcesof

changingtime-varyingbond market behaviour.We alsodevote

ourattentiontosomeofthemanysignificantpoliticaleventsthat

haveoccurredduringthepasttwentyyearsinEuropeaspolitical

developmentsintheEuropeanUnion,whichhavebeenparticularly

extraordinaryinmorerecenttimes,playapivotalroleon

regula-tions.CorbetandLarkin(2018)brieflyreviewthesepoliticalshifts

the efficient market hypothesis (EMH) failed This miscalculation of risk was severe

and destructive for the real economy.

2 We must note that there are a wide-range of actions that have been established

but have not yet been completed These include a number of structural reforms on

banks, the creation of the European deposit insurance scheme (EDIS), rules on capital

requirements, the development of a EU framework on covered bonds, addressing

risks related to NPLs, insurance companies and sovereign bond-backed securities,

and the strengthening of bank recovery and resolution (BRRD) among others A

summary of these development can be found in Appendix B.

3 The key financial regulation groups established in accordance with

Declara-tion 39 on Article 290 of the Lisbon Treaty include the expert groups on Banking,

Payments and Insurance; Sustainable Finance; Corporate Bond Market Liquidity;

Cross-border redress in financial services; Derivatives and Market Infrastructures

Member States; European Crowdfunding Stakeholders Forum; European Post Trade

Forum; the European Securities Committee; the Expert Group on barriers to free

movement of capital; intra-EU cross border investment environment; the

evalua-tion of the IAS Regulation; Retail Financial Services; Mortgage Credit; the Group of

representatives of financial services employees (UNI Europa); the Payment Systems;

andshowthatthelatterhavedevelopedwithinthewidespread financialcrisesandbeenexacerbatedinsomestatesbythe dra-maticinfluxofillegalimmigration.Asaresult,Europefindsitself

atacrossroadsinspiredbypoliticalspectrumshiftstotheleftand theright,withfear,uncertaintyfuellingnationalistrevoltacrossa hostofEuropeannations.Suchpoliticalshiftshavealsomanifested

inthenationalist-baseddecision-makingresultinginthegrowth

ofright-baseddecisionssuchastheBrexitortheItalianbudgetary issueswitnessedinrecentyears.Muchevidencehasbeenprovided thatcontagioneffectsexistsinsuchpoliticaldecision-making(Mei andGuo,2004;Rajsingh,2016).Itisthusopportunetoidentifyas

towhethersuchpoliticaldevelopmentsareasourceofinstability fortime-varyingsovereigndebtinstability,withfurtheremphasis

onthepresenceofcontagioneffects

Oneofthekeydatathroughwhichwecanidentifyboththe severityandcontagioneffectsofcrisesisthroughsovereignbond yields.Ourresearchshiftsattentiontothelong-runrelationship

ofsovereignbondmarkets,insteadoftheirdivergencesincethe rapiddevelopmentofboththeEuropeanregulatoryandpolitical environments.Inparticular,ourmethodologicalchoicefocuseson theinherenttimevariationsinsuchstructuraldestabilizations,i.e.,

astowhetherEuropeansovereignbondmarketsexperience long-termstructuraldestabilizationintheaftermathofchangesinthe regulatoryandpoliticalenvironments.Thisbuildsontheworkof Colacitoetal.(2011)whointroducedtheDCC-MIDASmethodology

toanalysethelong-runcorrelationcomponentsbetweenfinancial timeseries.Accordingtoourperspective,whilepoliticalinstability hasquitestrongtheoreticalgroundingforproducinginfluenceon sovereignbondmarkets,itisveryimportanttofurtherunderstand

astowhetherfinancial marketsthemselveswerein agreement withtheEuropeanCentralBank’sviewsthatitsregulatoryactions wereinfactfosteringtheresilientandsustainabledevelopmentof Europe’sfinanciallandscape.Withinthiscontext,suchregulatory interventionmightbeobservedasbeneficialtofinancialstability, butcouldalsobedetrimentaltosectoralandregionalprofitability, growthanddevelopment

Accordingtoouranalysis,wecontributetotheliteratureby showingthattheregulatorychangesinEuropehavesignificantand negativeimpactonthelong-runcorrelationsofthesovereignbond marketsofthemajoreurozonecountries.Thesecorrelationsalso changedrasticallywithinthemonthwheretheregulationis imple-mentedandthischangeispreservedwithinthefollowingmonths, showingthateffectsofregulatorychangesintheEUarenot transi-toryanddosustainonthecorrelationdynamicsofthesesovereign bondmarkets.Wecheckwhetherthisfindingisdistortedbythe trendcomponentsofthelong-runcorrelationsornot,andreveal thattheresultsarerobust.Adirectimplicationandoneofthemain contributionsofthepaperisthefindingthatthemoreregulations theEUattemptstoputinplace,thelowerthelong-runconvergence processofsovereignbondmarketsis.Nextand asarobustness check,wefocusondetectingpotentialstructuralshiftsinthe long-runcorrelationsandexaminingwhethertheyareassociatedwith regulatorychanges.Byapplyingthepenalizedcontrasts methodol-ogyofLavielle(2005)todetectthechangepoints,weshowthatthe structuralshiftsinthelong-runcorrelationsoccuraroundthetimes whenmajorregulatorychangesorimportantpoliticaleventstake place(suchasthecriticalstagesoftheBrexitprocess),supporting ourviewthatbothpoliticaluncertaintiesandregulatoryactionsare driversofthelong-runrelationshipbetweenthesovereignbonds

ofmajoreurozonemembercountries

Therestofthepaperisorganizedasfollows.Section2presents

aconcisereviewoftheliteraturebasedonsovereignbond dynam-ics,structuralchangesinEuropeanregulatorydynamicsandthe influenceofbroadpoliticaleventsonfinancialmarkets.We pro-videabriefreviewoftheDCC-MIDASmethodologyinSection3 Section4reportsthedatathatweuseandthecorresponding

Trang 3

empir-Fig 1. Fully and partially implemented regulatory changes in Europe, 2006–2018 Note: The above data represents all proposals of financial reform that are finalized-implemented or being planned by the European Commission Data available at https://ec.europa.eu.

icalresults.Section5providessomediscussionsandconcluding

remarks

TheEuropeanresponsetotheinternationalfinancialcriseshas

generated a broad range of both anticipated and unanticipated

consequencesformultiplesovereignstatesacrossarangeofboth

economicandpoliticalenvironments.Withinthissection,we

pro-vide a thorough overview of thekey dynamicsthat have been

observedwithinEuropeansovereigndebtmarkets,whichfurther

suggeststhekeyidentifieddriversofinstabilitysourcedwithin

eco-nomicandpoliticaldriversofbondmarketvolatilityandcontagion

Kimetal.(2006)wereamongthefirstresearchersthat

empir-ically investigate the influence of the EMU ontime variations

ininter-stock-bondmarketintegration/segmentationdynamicsto

findthatrealeconomicintegrationandthereductionof

currency-marketrisksupportedfinancialintegration,butinfactgenerated

aflight-to-safetyeffectduetobroadfearsaboutthefutureofthe

EMU.Christiansen(2007)echoedsuchevidenceofEMU

integra-tionintheperiodaftertheintroductionoftheeurowiththekey

driveridentifiedtobethatofinterestrates.Corbet(2014)found

thatEuropeansovereigndowngradesarefoundtobeassociated

withanincreaseinequityreturnsandcausesignificantincreasesin

thecostofinsuringdebtthroughCDSandtheyieldofgovernment

debt.Inarecentstudy,Sensoyetal.(2019)uncoveredahighdegree

ofsovereigndebtmarketintegrationbetweentheEMUmembers

overtheperiodprecedingtherecentfinancialcrises,while

seg-mentationisfoundafterwards.However,theFed’staperingpolicy

announcementin2013generatedanimpacttowardsanintegration

ofthesemarketsagain

Bessembinderetal.(2006)foundthatchangesinmarketdesigns

throughregulationscanhavefirst-order effectsontrade

execu-tioncostsonbondsevenforsophisticatedinstitutionalinvestors

HeathcoteandPerri(2002)foundthatthefinancialautarkymodel

can generate volatility in the terms of trade when

construct-ing a two-country, two-good model, to account for observed

cross-countryoutput,consumption,investmentandemployment

correlations.Sucharesultidentifiedthatinternationalcapitalflows areexceptionallyimportantfortheinternationalbusinesscycle ThecreationoftheEMUwouldhavegreatlyincreasedthiseffect Theseverityofthe2008–2009globalfinancialcrisisand the Europeansovereigndebtcrisisthatfollowedwaswidelyobserved

as a criticalpoint in thesharp changes inregulatorydynamics thatfollowedinEurope.ThisisobviousinFig.1whichpresents evidence of the timeline of introduction of regulatory changes

in Europe,whilefurtherconsideringthe announcementof reg-ulatorychangesthathavenotbeenimplementedyet.Mohland Sondermann (2013) foundthat statementsabout restructuring, bailout andtheinvolvementof theEuropeanFinancial Stability Facility (EFSF) have impacted bond spreadsof countries in the peripheryoverGermany,indicatingthatthemoredifferenteuro areagovernmentsissuedstatementsatthesametime,themore bondspreadshaveincreased.Furthermore,theauthorsfindthat statementsfrompoliticiansfromAAA-ratedcountriesseemedto haveaparticularlystrongimpactonspreads.LierseandSeelkopf (2016) foundthat in thecontext of financial market pressures

intheformofrising bondyields,Europeangovernments raised theirtaxes,especiallyinthemoreregressivefieldofindirecttaxes, suggesting thatcapitalist democracieshave littlepolitical room

to maneuver and to conduct redistributive politics at times of highfiscal stress.Katsikas (2011)foundthat theEU’sdecisions

toadoptthestandardsproducedbytheInternationalAccounting StandardsBoard(IASB),andtoestablishanew,differentiated Euro-peanaccountingregulatorymechanism,weredrivenbyitsdesire

tobolsterEuropeaninfluence

DeGrauweetal.(2017)foundevidencethatasignificantpartof thesurgeinthesovereignbondspreadsoftheperipheralEurozone countrieswasdeterminedfromabroaddisconnectionfrom under-lyingfundamentalsandparticularlyfromacountry’sdebtposition Thiswasfoundtobemorelikely tobeassociatedwithmarket sentimentsandliquidityconcerns.Butlong-termpoliticalchanges havealsomanifestedintheincredibleeconomiceventsthathad taken placein countriessuchasCyprusand Italy (Michaelides, 2014;Deeg,2005).Benediktsdottiretal (2011)foundthat Ice-landicauthoritiesasamatterofpolicyencouragedthecreation

Trang 4

deregulationofthebankingsystem,rules andregulationsbeing

relaxedandtheneglectof financialsupervision Thisinevitably

reducedsovereignfinancialdiversification

Mugge(2011)foundthatthreekeyresultswereevidentafterthe

EUhadtakenaroleinglobalfinancialgovernance.First,theEUhas

stabilized,ratherthanchallenged.Second,theEUcontinuestobe

oneoftwocentralnodesinGFG,whichessentiallystillisa

transat-lanticaffair,confoundingexpectationsthatEuropewouldfinditself

inamuchmoredispersedweboflinkswithotherregulatory

pow-ersaroundtheworld.Third,givenitsspecialinstitutionalcharacter,

therearesignsthataprominentEUmaytransformgovernance,but

itstillremainsunclearhowpronouncedthesedynamicswillbe

CorbetandLarkin(2017)foundthatEuropeancountrieswith

morelocalbankingnetworksintheformofcreditunions,

pub-lic banksor savings banks,generate greater levels of volatility

whencomparedtothatoftheircommercialcounterparts,

partic-ularlyincountrieswithmoremonopolisticsectors Further,the

announcementsoftheEuropeanBankingAuthoritygenerate

signif-icantvolatilityeffectsfortheEuropeanbankingsectoratlarge,with

particularemphasisonstresstestingresults,butalso

announce-mentsbasedonrecapitalization,regulationandtransparency.The

resultsindicatethatuniformityofregulationmayinfactbe

hin-dering and restricting the growthof somedomestic and more

peripheralandlocallydesignedbankingsectorsintheformofrules

designedforcommercialbankingoperations

Regardingourmethodology,severalstudieshaveusedthe

DCC-MIDAS technique to investigate theinteractions betweenEMU

markets.TheDCC-MIDASmainly differsfrom standard

GARCH-family models as it allows a baseline variance to vary slowly

throughoutthetimeperiodanalysed.VirkandJaved(2017)focused

specificallyonEuropeanstockmarketsbetween1990and2013

usingDCC-MIDAStoidentifyevidenceofsubstantialdivergence

fromGreekriskduringtheEuropeanfinancialcrisisperiod.In

par-ticular,cross-countryjoint relationshipsofconditionalvariance

andreturncorrelationsarefoundtobetypicallypositive.Boffelli

etal (2016) focused onboth thehigh and low frequency

cor-relations inEuropean governmentbonds viaDCC-MIDAS while

consideringtheireconomicdrivers.Theyfindstronglinksbetween

spreads’volatilityand worseningmacroeconomicfundamentals

Accordingly,relativespreadsmovetogetherinpresenceof

sim-ilarmacroeconomicfundamentals;yettheincreasingcorrelation

inspreadsduringtheburstofthesovereigndebtcrisiscannotbe

entirelyascribedtomacroeconomicfactorsbutrathertochanges

in market liquidity Nitoi and Pochea (2019) analysed the

co-movementsand contagionin 24EuropeanUnionstockmarkets

from2004to2016usingtheDCC-MIDASmethodologyandemploy

agravity-typeregressiontoinvestigatethedeterminantsof

long-term correlations They obtained mixed findings for long-term

correlations’driversincontagiontimes,revealingapurecontagion

thatisnotexplainedbyfundamentalsandawake-upcallinterms

ofcross-borderbankflows

Asstatedintheintroductionsection,themajorgoalofthispaper

istoexaminetheimpactofregulatorychangesonthestructural

interdependenciesofEMUsovereignbondmarketsaswellasto

discussitsimplicationsforthefutureofregulations.Weempirically

proxythestructuralinterdependenciesofthesemarketsbytheir

long-rundynamicyieldcorrelationswhichwillbeobtainedbythe

DCC-MIDASmethodology(Colacitoetal.,2011)

Considerasetofnsovereignbondsandletthevectorofdaily

changesintheiryieldsbedenotedbyrt=[r1,t, ,rn,t]obeying

thefollowingprocess:

rt∼i.i.d.N(,Ht)

Ht=DtRtDt

(1)

where isthevectorof unconditionalmeans,Ht isthe condi-tionalcovariancematrixandDtisadiagonalmatrixwithstandard deviationsonthediagonal,and

Rt=Et −1[tt]

t=D−1t (rt−)

(2)

Themodelaboveisestimatedintwoconsecutivesteps:(i)the conditionalvolatilitiesinDtareestimated,and(ii)theconditional correlationmatrixRtisobtained

3.1 GARCH-MIDASestimation

WestartwiththeworkofEngleetal.(2013)whoproposeto sep-aratevolatilitydynamicsintoshort-andlong-termcomponents Thisstructureusesamean-revertingunitdailyGARCHprocess sim-ilartoEngleandRangel(2008),andaMIDASpolynomialwhich appliestolowerfrequencyvariables

Wedenotetheshort-and long-runvariancecomponentsfor bondibygiandmirespectively.Wekeeplong-runcomponentmi constantacrossthedaysofthelowfrequencyperiod.Ni

vdenotes thenumberofdaysthatweholdmifixed.Thetwoletterstand denotetime-scales.Inparticular,gi,tmovesdailywhereasmi,only onceeveryNi

vdays

Weassumethatforeachbondi,univariatedailyyieldchanges followtheGARCH-MIDASprocesswithtwovariancecomponents:

ri,t=i+

mi,×gi,ti,t where t=(−1)Nvi+1, ,Nvi (3) The short-run variance component of returnsfollows a simple mean-revertingunitGARCH(1,1)process:

gi,t=(1−˛i−ˇi)+˛i(ri,t−1−i)2

mi, +ˇigi,t−1 (4) with˛i>0,ˇi≥0and˛i+ˇi<1forstationarity.Theshort-run componentgi,taccountsfordailyfluctuationsthat areassumed short-lived,i.e.,itrelatestoday-to-dayconcerns

Thelowfrequencycomponentmi,isaweightedsumofKi

vlags

ofrealizedvariances(RV)overalonghorizon:

mi,=mi+i

K i v



l=1

wheremiandiarefreeparameterstobeestimatedwithmi>0 and0≤i<1toguaranteeacovariancestationaryprocess.The

mi, is a trend component and relates to the effects of future expectedglobal/macro-economicvariablesonvolatility

WhilesettingNi

vequaltothenumberoftradingdayswithin

amonth,therealizedvariancesinvolveNi

vdailynon-overlapping squaredreturnsasfollows:

RVi,=

N i v



t =(−1)N i

v +1

Asa weightingfunction, weusea betafunction withdecay parameterωi

v:

ϕl(ωvi)=

(1− l

K i v )ω i

v −1

K i v

j =1(1− j

K i v )ω

i

wheretheweightattachedtopastrealizedvarianceswilldepend

ontwoparametersωiandKi.Forallω >1,theweightingscheme

Trang 5

deter-minedbythesizeofωv.Large(small)valuesofωvgeneratearapidly

(slowly)decayingpattern.Byconstruction,ϕl(ωv)arenon-negative

andsumtoone

3.2 DCC-MIDAS

Inthisstep,wecalculatethecorrelationsbasedonthevolatility

adjusted(standardized)residualsi,tobtainedinSection3.1:

qij,t=¯ij,(1−a−b)+ai,t−1j,t−1+bqij,t−1

¯ij,=

Kcij



l =1

ϕl(ωc)cij,−l

cij,=

Ncij k=(−1)N ij

c +1i,kj,k



Ncij

k=(−1)N ij

c +1

2 i,k



Ncij k=(−1)N ij

c +1

2 j,k

(8)

whereaandbarethedrivingparametersofthecorrelation

pro-cesswitha,b>0anda+b<1forstationarity;andtheweighting

schemeϕl(ωc)for correlationsissimilartothatoneusedinEq

(7).AsintheGARCH-MIDASequation,thelong-run(slowly

mov-ing)correlation ¯ij, doesnotvaryatdailyfrequencyt but ata

lowerfrequency,anditisaweightedsumofKcijlagsofrealized

correlations (i.e.,Kcij arespanlengths of historicalcorrelations),

calculatedonNcij dailynon-overlappingreturns(i.e.,Ncij arethe

laglengths).Whereas,thedailyconditionalcorrelationsbetween

sovereignbondsiandjcaneasilybecalculatedbyusingtime

vary-ingcovariancesqij,tasshownbyEngle(2002),i.e.,

ij,t=  qij,t

qii,t

Thistwo-componentstructureallowsustoobservetheshort()

andlong(¯)rundynamicsofthecorrelations.Theparametersof

theDCC-MIDASareestimatedbymaximizingthefollowing

quasi-likelihoodfunction

QL =−

T



t =1

(nlog(2 )+2log|Dt|+rtD−2t rt)

T



t =1

(log|Rt|+tR−1t t+t)

(10)

Thefirstsumin Eq.(10)contains thedataand thevariance

parameters (coming fromGARCH-MIDAS estimation)while the

secondsumisbasedonvolatilityadjustedresidualsandthe

corre-lationparameters

4.1 Sampledata

We use daily 10-year benchmarksovereign bond yields for

a sample of eleven countries in our analysis.4 Sample

coun-tries are the major and also the earliest eurozone members;

Austria,Belgium,Finland,France,Germany,Greece,Italy,Ireland,

Netherlands,Portugal,andSpain.Thedataisobtainedfrom

Thom-sonReutersDatastreamanditcoversatimeperiodfromJanuary

4, 1999 (the introduction of euro) until May 28, 2019, which

4

specificallyincludesthevariousphasesoffinanciallinkagesinthe Europeansovereignbondmarketsoverthelast20years

Fig.2showsthechangesinsovereignbondyieldsoftheselected countriesoverthesampleperiod.Weobserveaclearconvergence

of yieldswiththeintroductionofeuro wherethis convergence keepsitspatternuntilthebeginningoftheEuropeansovereigndebt crisisin2009.Inparticular,withasharpincreaseinitssovereign bondyield,Greece demonstratesphasesofdivergencefromthe rest.Inthefollowingperiod,asimilardivergenceisalsoobserved betweentheyieldsofthecountriesthatstrugglewithdebt(Ireland, Italy,PortugalandSpain)andthosethatareviewedassafehaven (FranceandGermany),suggestingaperiodofflight-to-qualityby investorsinthesemarkets

Table1presentsthedescriptivestatisticsofthedailychanges (takenasthedifferenceinyieldsinconsecutivedays),aswellasthe stationaritytestresults.Wecanseethatallyieldshaveanegative dailyaveragechangeshowingthatcostofborrowinghasdecreased forallthesamplecountriesinourstudyperiod.Greecehasthe lowestdailyaverage(−0.0007)asexpectedduetothesustained periodsofhighyields,especiallyduringthe2011–2012sovereign bondcrisisphase.Forthesamereason,italsohasthehighestyield increase(3.947)inasingleday

TheunconditionalvolatilityoftheGreeksovereignbondyields (0.54),measuredbystandard deviations,isalmostfourtimesof Portugal(0.15),thecountryhavingthenexthighest bondyield volatility.Yieldchangedistributionsareskewedtotherightexcept for the Greece, Italy, Ireland and Spain Also, all yield changes exhibitexcesskurtosis(fattails),withGreecehavingan outstand-ingvalueof660.Clearly,skewnessandkurtosiscoefficientsindicate thatreturnseriesarefarfromnormallydistributed.Thisdeparture fromnormalityisconfirmedbytheJarque–Berateststatisticsthat rejectsnormalityatthe1%levelforallseries.5

Table1alsopresentstheunitroottestresultforthe stationar-ityofourdailychangeseries(unitroottestscontainaconstant) AugmentedDickey–Fuller(ADF)testrejectsthenullhypothesisof unitrootforalltheseriesunderconsiderationatthe1%significance level,indicatingthatallthedailyyieldchangeseriesarestationary 4.2 Dynamicsofshort-andlong-runcorrelations

ThetoppanelofTable2displaystheestimationresultsforthe conditionalyieldchangevarianceswherethevaluesinthe paren-thesesbelowarethestandarderrorsoftheestimatedcoefficient Accordingly,mostoftheparametersaresignificantatthe1%level Thesumsof˛andˇvarywithintherangelimitedby0.77and 0.999frombelowandaboverespectively,thereforesatisfyingthe stationarityboundary˛+ˇ<1

Thedecayparameterωvissubstantiallylargerthan1for major-ityofthebonds,indicatingthatweightofthelagsdecreasesrapidly whencalculatingrealizedvariances.Ontheotherhand,this param-eterisalmost1forAustria,FranceandGermany,implyingaflat weightingfunctionforthesecountries.Estimationresultsforthe MIDAS correlationsare provided inthelower panel.Thedecay parameterωc impliesa moderatelevel ofdecreasingweighting function.Theaandbparametersarebothhighlysignificant,and theirsumof0.995whichisverycloseto1,suggestingalong-run correlationwithahighlypersistentstructure

Inourwork,thereare11countriesunderconsideration,which makesthebilateralanalysisimpracticalsincewewouldhaveto analyse55differentcorrelationstructures.Instead,weproceedas follows.Foreachday,wetaketheequallyweightedaverageofthe dailyyieldchangesofthesamplesovereignbonds.Thistimeseries

5 In the tables throughout this paper, *, ** and *** denote significance at the 10%,

Trang 6

Fig 2.European Sovereign Bond Yields from 1999 to 201.

Table 1

Summary statistics and results of unit root tests for the first differences in EMU sovereign bond yields.

Notes: Asymptotic critical values for the ADF test are −3.43, −2.86 and −2.57 for 1%, 5% and 10% significance levels respectively We use the standard acronyms in the column tables for the country name abbreviations In the last column, Benchmark refers to the cross-sectional equally-weighted daily yield changes of all sample sovereign bonds.

actuallyshowhow usefulDCC-MIDASmodelscanbein

under-standingthestructuralchangesinthedependenciesbetweenthe

samplesovereignbondyields.Forexample,DCCtakesminimum

andmaximumvaluesof−0.16and0.87respectivelyforGermany, givingusarangegreaterthan1.Ontheotherhand,DCC-MIDASis confinedtotheinterval(0.36,0.76)forthesamecountry.Table3 presentsthedescriptivestatisticsoftheDCCandtheDCC-MIDAS forallsamplecountries.Thestabilityofthelatterisobserved eas-ilywhenwecomparethestandarddeviations.Inmanycases,the unconditionalvolatilityof theDCCisaroundtwiceofthe DCC-MIDAS,andinsomeextremecasessuchasIreland,thisratiocan reachuptoalmost4.Thevolatilemovementof theshort-term correlationcomponentisalsoreflectedinthemeancorrelation val-ues.Withoutanexception,DCCmeanstaysbelowtheDCC-MIDAS

Trang 7

Table 2

GARCH-MIDAS and DCC-MIDAS parameter estimates.

Notes: The top panel reports the estimates of the GARCH-MIDAS coefficients for the sovereign bonds The bottom panel reports the estimates of the DCC-MIDAS parameters Standard error of the coefficient estimates are given in the parenthesis The number of MIDAS lags is 20 for the GARCH process and 120 for the DCC process.

Fig 3. Long-run vs short-run dynamic correlations Note: The figure shows the dynamic correlations between individual sovereign bond yields and the aggregate EMU sovereign bond market yield.

correla-tionsbetweenindividualsovereignbondyieldsandtheaggregate sovereignbondmarketyield.Theshadedareasrefertothecalendar monthsoftheregulatorychanges.Thisfiguresuggeststhatthere mightbeasignificantrelationbetweentheregulatoryactionsand

Trang 8

Table 3

Summary statistics and results of unit root tests for long-run (DCC-MIDAS) and short-run (DCC) correlations.

Notes: Asymptotic critical values for the ADF test are −3.43, −2.86 and −2.57 for 1%, 5% and 10% significance levels respectively.

Fig 4. Long-run dynamic correlations with applied regulatory changes Note: The dynamic correlations above are between individual sovereign bond yields and the aggregate EMU sovereign bond market yield The shaded areas denote the months of the regulatory changes.

¯

InEq.(11),¯tistheDCC-MIDASandtheD1mt isadummy

vari-ablethattakesoneinthecalendarmonththattheregulatoryaction

istaken,andotherwisezero.Wecallthistype1modelandit

basi-callyshowsuswhetherthereisasignificantrelationshipbetween

theregulatoryactionsandthelong-runcorrelationsamongbond

yieldswithinthemonthofactions.Table4displaystheestimation

results.AllcountriesexceptIrelandgeneratesignificantresults.We

furthercheckwhetherthissignificantimpactistransitoryornot,

soweestimatethesamemodeltypebutchangethedummy

vari-ableD1m

t toD2m

t wherethenewdummyvariabletakesoneinnot

onlythecalendarmonthoftheregulatoryactionbutalsointhe

followingcalendarmonth.Table4showsthatalldummyvariables

aresignificant,withhowevertheoppositesigncomparedtothe

estimationresultswhenweuseD1m

t Thispresentsaninteresting caseandmightbeanindicatoroftheinvestors’overreactiontothe regulatorychangeswithinashorttimeframe

Onemightarguethatthesignificantimpactoftheregulatory changesmightariseduetothetrendinthelong-runcorrelations Indeed,itmightactuallybethecasesincesomeofthelong-run correlationshavebeenfoundtobenon-stationaryasdisplayedin Table3.Tocontrolforthetrendeffect,weestimatethemodelin thefollowingequation:

¯

t=c0+c1D1mt +c2t1m+ t (12)

WecallthemodelinEq.(12)type2anditbasicallyshowsus whetherthereisasignificantrelationshipbetweentheregulatory actionsand thelong-runcorrelationsamongbondyieldswithin themonthofactionswhenwecontrolforthetrendinthe corre-lations.AccordingtoTable4,trendtermcoefficientsarefoundto

Trang 9

Table 4

Impact of regulatory changes in the long-run dynamic correlations.

Notes: In this table, Model 1 and Model 2 represent the regressions without and with the trend variable, respectively D 1m

t refers to the coefficient of the dummy variable that takes the value one in the calendar month that the regulatory action is taken, and otherwise zero Similarly, D 2m

t refers to the coefficient of the dummy variable that takes the value one in the calendar month that the regulatory action is taken and also the following calendar month, otherwise zero t 1m (t 2m ) refers to the trend coefficient when

we estimate the Model 2.

Table 5

This table shows the dates of the long-run correlation shifts for each sovereign bond detected by Lavielle’s penalized contrasts methodology with allowance for different number of maximum break points.

(a) Panel A: Maximum number of allowed break points is three

(b) Panel B: Maximum number of allowed break points is six

(c) Panel C: Maximum number of allowed break points is nine

Note: This table demonstrates the shift dates in long-run correlations when we allow for maximum number of breaks equal to 3, 6 and 9 In the analysis, we cover all possible break structures when maximum number of breaks runs through 2 to 10.

significant

ofswitchingsignsisstillthere.Allinall,ouranalysisshowsthat

regulatorychangeshavesignificantand negativeimpactonthe

long-runrelationshipofsovereignbondyieldsofthesample

coun-triesand thissignificanceis robustwithrespecttothetrendin

thecorrelations.Hence,themoretheregulationstheEUattempts

toputinplaceoverthelongrun,thelowertheconvergence

pro-cess

4.3 Detectingstructuralshiftsinthelong-runcorrelations

Wenowrunarobustnesscheckoftheresultsintheprevious sectionbydetectingthestructuralshiftsinthelong-run correla-tionsand investigatingwhethertheseshiftsareassociatedwith theregulatorychangestheEuropeanUnionhasundertakenover ourstudyperiod.Todoso,weapplythestateoftheartpenalized contrastsmethodologybyLavielle(2005)tothecorrelationseries

todetectthechangepoints.Thedetailsofthemethodologyare pro-videdinAppendixC.Weprovidethemaximumpotentialnumber

ofchangepointsasaninputandreceivethedatesofchangesasthe output.Table5demonstratesthechange(orbreak)pointdatesfor eachcountry’ssovereignbondyieldcorrelationswhenweallow

Trang 10

Table 6

Important events that potentially created shifts in the long-run correlations

contagion and the announcement of a tax

on UK banks and a deposit guarantee schemes for bank failures

https://www.ft.com/content/7e0186ac-71aa-11df-8eec-00144feabdc0 https://www.spiegel.de/international/germany/radical-cutbacks-german-government-agrees-on-historic-austerity-program-a-699229.html 05/07/2011 02/08/2011 30/08/2011 New Greek bailout tranche and a sharp

escalation of the Greek crisis

https://www.telegraph.co.uk/finance/economics/8620735/The-challenges-facing-Christine-Lagarde.html

20/12/2011 Regulation shifts/announcement https://www.telegraph.co.uk/finance/comment/damianreece/8971513/

Eurozone-zombies-follow-Mario-Draghis-cheap-money.html 14/02/2012 First major broad EU credit ratings cut

https://www.forbes.com/sites/afontevecchia/2012/02/13/moodys-cuts-peripherals-scrutinizes-france-and-britains-triple-as/

10/04/2012 Cypriot financial problems escalate sharply https://www.ft.com/content/f209b43c-8316-11e1-929f-00144feab49a 08/05/2012 European austerity measures are reported

to be broadly damaging numerous European real economies

https://www.telegraph.co.uk/news/worldnews/europe/eu/9252941/ Europe-austerity-crisis-Q-and-A.html

03/07/2012 Start of the Brexit process and major

regulatory developments (Insurance, BRRD, PRIPS, IMD, UCITS)

https://www.news24.com/World/News/Cameron-under-pressure-over-EU-referendum-20120702

https://www.independent.co.uk/news/world/europe/what-if-britain-left-the-eu-7904469.html

http://europa.eu/rapid/press-release MEMO-12-516 en.htm?locale=en 25/09/2012 Basel III regulations and rules on high

frequency trading

https://www.bis.org/publ/bcbs229.pdf 20/11/2012 New EU data protection regulation

https://www.lexology.com/library/detail.aspx?g=36c4f233-a484-41b2-9fc1-65e9db2cb0a0 18/12/2012 EU ODR regulation http://europa.eu/rapid/press-release MEMO-12-994 en.htm

15/01/2013 EU credit rating agencies regulation http://europa.eu/rapid/press-release MEMO-13-13 en.htm

10/03/2015 Beginning of EU quantitative easing

https://www.euractiv.com/section/euro-finance/news/ecb-euro-central-banks-begin-qe-stimulus-programme/

07/02/2017 EU securitization problem due to Brexit https://www.ft.com/content/b47104c6-ea32-11e6-893c-082c54a7f539 Note: The first column represents the long-run correlation shift dates that are common for at least five sample countries The second column provides the events that might

be associated with these shifts and the sources of these events are provided in the third column.

forthenumberofmaximumbreakpointsas3(PanelA),6(Panel

B)and9(PanelC)

Inourextendedanalysis,weallowforthemaximumnumberof

breakpointstorunfrom2to10,andthenselectthedatesthatare

commonforatleast5samplecountries.Table6providesthebreak

dateswiththepotentialreasonscausingtheshifts.Itisclearthat

thebreakdatesmostlyfallintotheyears 2011and2012,when

theEuropeansovereigndebtcrisisreacheditspeakwithvarious

regulationsbeingputintoplacetocontrolthesituation.Whenwe

takeadetailedlookatthepotentialsources,weseeavarietyof

regulatoryactionstakenbytheEuropeanCommissionandtheBasel

Committee.Inadditiontothose,majoreconomicaleventssuchas

thefearofcontagioninEurope,Greekbailoutprogramme,credit

ratingcutsintheEUandthequantitativeeasingintheeurozone

standoutaspotentialsources.Finally,weseethatpoliticalevents,

inparticularvariousstagesoftheBrexitprocess,alsoseemtohave

asignificantimpactonshapingthelong-runcorrelationsbetween

thecoreeurozonecountries’sovereignbondmarkets

Tosumup,long-runcorrelationsbetweentheEMUsovereign

bond markets are characterized by occasional structural shifts

whichmostlytookplaceduringthetimesofregulatorychanges

inordertodealwiththesovereigndebtcrisisorimportant

eco-nomicandpoliticalevents(e.g.,creditratingdowngradesinEurope

andtheBrexit).Thisfindingstrengthenstheargumentthatboth

political and economicuncertainties as wellas thekey

regula-toryactionsaredriversofthelong-runrelationshipbetweenthe

sovereignbondsofmajoreurozonemembercountries

ThisresearchidentifiesandexaminestheimpactofEuropean

regulatorychangesonthestructuralinterdependencies ofEMU

sovereignbondmarketsaswellastodiscussitsimplicationsfor

thefutureofregulations.Tocompletethistask,weutilizethe

DCC-MIDASmethodologywhichallowsforbaselinecorrelationlevels

tovaryslowlythroughouttheperiodunderinvestigation.Oneof

thekeyissuesidentifiedduringtheprocessofEuropeanintegration wasbasedonthefactthatbroadregulation,withparticular empha-sisonitsuniformity,mightactuallybehinderingbroadgrowthof somedomesticandmoreperipheralandlocally-designedmarkets OurselectedcountriesincludenotonlycoreEuropeanstatessuch

asFrance,Germany,Austria,BelgiumandtheNetherlands,butalso themoreproblematicandperipheralstatesreferredtoasthePIIGS; i.e.,Portugal,Italy,Ireland,GreeceandSpain

The empirical results obtained from using the DCC-MIDAS frameworkshowthatregulatorychangeshavesignificantimpacts

onthelong-runrelationshipamongsovereignbondyieldsofthe samplecountriesandthissignificanceisrobustwithrespecttothe trendinthecorrelations.Themethodologicalselectionisvalidated whendocumentingthedifferingbehaviourofboththelong-and short-termcorrelationcomponentsbetweenindividualsovereign bondyields.Astotheexceptionalnatureoftheinfluenceofthe financial crises and sovereigndebt crises that affected Ireland, Greece,Spain,PortugalandItaly,wefindsubstantialevidenceof significanteffectsofregulatoryannouncementsduringtheperiod analysed

Our analysis also examines the structural shifts in the long-runcorrelationswithrespecttoregulatorychange announce-ments(boththeregulatoryannouncementsthathavebeenboth announced andfully implementedand thosethat arecurrently beingimplementedandhavenotyetreachedconclusion).Itwas broadly assumed that market responses to regulatory change announcementswouldbesubstantialatthepointthatsuch infor-mationof largestructural changesbeingannounced Thisturns outtobethecase,withsharpresponsesintheDCC-MIDAS frame-workobservedduringkeyeventssuchastheprovisionoffinancial support for Greece The detailed analysis of the results shows thatEuropeanbondmarketsweresharplyinfluencedthroughthe implementationof keyregulationsundertakenbytheEuropean CommissionandtheBaselCommittee,suchasBRRD,PRIPS,IMD, UCITS,BaselIII,dataprotectionregulation,EUODRregulation,and theregulationofEUcreditratingsagencies.Thesesubstantialshifts

Ngày đăng: 17/03/2021, 17:33

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w