Fast and slow light enhancement using cascaded microringDuy-Tien Lea, Manh-Cuong Nguyenb, Trung-Thanh Lec,∗ a Posts and Telecommunications Institute of Technology PTIT and Finance-Bankin
Trang 1Fast and slow light enhancement using cascaded microring
Duy-Tien Lea, Manh-Cuong Nguyenb, Trung-Thanh Lec,∗
a Posts and Telecommunications Institute of Technology (PTIT) and Finance-Banking University, Hanoi, Viet Nam
b Le Quy Don Technical University, Hanoi, Viet Nam
c International School (IS-VNU), Vietnam National University (VNU), Hanoi, Viet Nam
Article history:
Received 3 September 2015
Received in revised form 31 October 2016
Accepted 7 November 2016
Keywords:
Microring resonator
Fast light
Slow light
Silicon waveguides
FDTD
Transfer matrix method
Multimode interference (MMI)
Microresonators
AcascadedmicroringresonatorbasedonsiliconwaveguideswithanMMI(Multimode Interference)basedSagnacreflectorisproposedinthisstudy.Bycontrollingthecoupling coefficientswiththeusedoftheMMIbasedSagnacreflector,thedoubleofbothpulse delayandadvancementfortheslowandfastlightcanbeachieved.Thenewstructurecan producethefastandslowlightphenomenonononechipwithadoubleofthetimedelay andpulseadvancement.ByusingtheSagnacreflector,thedeviceisverycompact.Transfer matrixmethodandFDTD(FiniteDifferenceTimeDomain)simulationareusedtoobtainthe characteristicsofthedevice.Thetransmission,phase,groupdelayandpulsepropagation areanalyzedindetail.OurFDTDsimulationsshowagoodagreementwiththeanalytical theory
©2016ElsevierGmbH.Allrightsreserved
1 Introduction
Inrecentyears,opticalmicroringresonatorshavebeenofgreatinterestforapplicationsinopticalcommunicationssuchas opticaldelaylines,opticalswitches,modulators,filters,dispersioncompensatorsetc.[1,2].Micro-ringresonatorstructures consistsofanumberofsinglemicro-ringresonatorscascadedinseriesorinparallelcanbeusedforhigherorderfilterswith extendedfreespectralratios[3]orswitching[4],modulatingapplications[5],fastandslowlight[6]
Analysisofthegroupdelayandtransmissioncharacteristicsofcascadedmicroringresonatorsusedforopticalfiltersand dispersioncompensatorshavebeenstudied[7–9].However,thesestructureshavepositivegroupdelayandmainlydesigned forpulsedelayapplications.Slowandfastlightgenerationareemergingasaveryattractiveresearchtopic.Varioustechniques havebeendevelopedtorealizefastlightandslowlightinatomicvaporsandsolid-statematerials[10].Oneapplicationamong thesetechniquesistocontrolthegroupvelocityvgoflightpulsestomakethempropagateeitherveryslow(vg<c)orvery fast(vg>corvgisnegative),wherecisthevelocityoflight
Inthisstudy,weproposeanewcascadedmicroringstructurebasedonsiliconwaveguideswithaSagnacloopreflector TheSagnacloopreflectorhasbeenappliedtomanyapplicationstructuressuchasfilteringandfastlightstructures[11,12]
Bycontrollingthecouplingcoefficientsofthecouplerusedinmicroringresonatorsintheproposedstructure,negativeand positivegroupdelaycanbeobtained.Thismeansthatthelightvelocitycanbecontrolledandthereforethefastandslow
∗ Corresponding author.
E-mail addresses: thanh.le@vnu.edu.vn, thanhvn au@yahoo.com (T.-T Le).
http://dx.doi.org/10.1016/j.ijleo.2016.11.038
0030-4026/© 2016 Elsevier GmbH All rights reserved.
Trang 2Fig 2.Transmission, phase and group delay characteristics of the single microring resonator.
lightcanbeinducedbythestructure[13–15].Here,weuseaSagnacloopreflectorbasedonan1×2MMI(Multimode Interferencecoupler)attheendofthestructuretoenhancethefastandslowlight.TheuseofanMMIbasedreflectorforthe reflectiontodoublethepulsedelayandpulseadvancement.Itisshownthatthegroupdelay,timedelayandadvancement aredoubledcomparedtothecasewithoutusingtheMMISagnacloopreflector.Weusesiliconmicroringresonatorsbecause
ofhighqualityoffabricationbyusingCMOScompatibleprocessanddevicecompactnesswithahighindexcontrastsystem
2 Design
ThestructureconsistingofN-singlemicroringresonatorscascadedinserieswithaSagnacloopreflectorisproposedin Fig.1(a)
Trang 3Fig 3. Input and output pulses at the single microring resonator.
2.1 Singlemicroringresonator
ForasinglemicroringresonatorasshowninFig.1(b),theoutputfieldcanberelatedtotheinputfieldbytheexpression [16]
H1=E2
E1 = 1−˛1exp
j1
1−˛11exp
whereE1,E2arethefieldamplitudeattheinputandoutput;1 and1=
1−|1|2arethetransmissionandcoupling coefficientsofthecoupler;˛1 isthelossfactorintheringwaveguideand1=2
NeffLR1istheaccumulatedphaseshift overtheringwaveguide.Neff istheeffectiverefractiveindexofthewaveguide,isthewavelengthandLR1=2R1isthe circumferenceoftheringwaveguide
Theeffectivephaseshiftofthemicroringresonatorcanbedefinedby
single=arg
2
E1
=artan
˛12sin (ω)
1+˛1
−(1+2)˛1cos (ω)
(2)
Thenormalizedgroupdelayisgivenbyn=−dsingle
dω Theabsolutegroupdelayisd=Tn,whereTistheunitdelayofthe signalpropagatingoverthemicroringwaveguide.Theresonanceisoccurredatthephase1=2m,wheremisaninteger
Atresonance,1>˛1theringresonatorandwaveguideisunder-coupledandleadingtopulseadvancementorfastlight; when1<˛1,theyareover-coupledandleadingtopulsedelayorslowlight;thecriticalcouplingoccurswhen1=˛1 The transmission, phase and group delay of the single microring resonator at the transmission coefficients 1= 0.9975,0.9966and0.99respectivelyareshowninFig.2.Theparametersaresetasfollows:thelossfactorofthewaveguide
˛1=1dB/cm,thelengthofthemicroringwaveguideLR1=300m.Thesimulationshowsthatthepositiveandnegative groupdelaycanbeachievedbyadjustingthecouplingcoefficientofthecoupler.Itisassumedthatasiliconwaveguidewith
aheightof220nmandwidthof400nmandrefractiveindexNeff =2.25
Wenowinvestigatethepulsepropagationoverthesingleringresonator.ItisassumedthattheinputpulseisGaussian andcanbeexpressedas[17]
Trang 4Fig 4.Transmission characteristics of the cascaded microring resonators (a) = 1 = 0.99 and (b) = 1 = 0.9975.
where0istheresonancewavelengthofthesinglemicroringresonator,THW=Tb/2isthebithalfwidthat1/e2intensityand
Tbisthebitperiod.FromthesimulationsofFig.2,theresonancewavelengthis0=1.54817m.Theinputandcorresponding outputpulseswiththetransmissioncoefficients1=0.9975, 0.9966and0.99areshowninFig.3,wheretheinputpulse widthTp=50ps[18].Thesimulationsshowthatpulsedelayof20pscanbeobtainedwhen1=0.99andwhen1=0.9975 thepulseadvancementof12psisobtained
2.2 Cascadedmicroringresonators
Asidecoupledintegratedspacedsequenceofresonators(SCISSOR)orcascadedmicroringresonatorwithouttheSagnac reflectorhasbeenfirstlyproposedbyHeebnerandBoyd[19].ItwasshownthatbyusingSCISSORstructure,fastandslow
Trang 5Fig 5.Input and output pulses at the cascaded microring resonator structure.
lightcanbeobtained.Here,weconsideraSCISSORasshowninFig.1withaSagnacloopreflector.Forsimplicity,weassume thatNringresonatorsareidentical.Asaresult,thetransferfunctionoftheSCISSORcanbewrittenby
HSCISSOR=H1H2 HN=(E2
E1)
N
=
−˛exp
j
1−˛exp
j
(4)
Here=1and˛=˛1isthelossfactorintheringwaveguideand=2
NeffLR Thetransmission,phaseandgroupdelayofthecascadedmicroringresonatorforN=1,2,3areshowninFigs.4and5.It
isassumedthatthetransmissioncoefficientofthecoupleris1=0.99and0.9975.Thesimulationresultsshowthatslow andfastlightareinducedbyadjustingthecouplingcoefficients.Inaddition,thepulsedelayandpulseadvancementare increasedbyNtimescomparedwiththesinglemicroringresonator
2.3 CascadedmicroringresonatorswiththeSagnacreflector
Fig.1showsthecascadedmicroringresonatorwiththeSagnacreflector.Inthisstudy,weusean1×2MMIcouplerin theSagnacreflector.Asaresult,thetransferfunctionoftheproposedstructureinFig.1canbeexpressedby
H=(2j˛sss)
−˛exp
j
1−˛exp
j
2N
(5)
wheresands=
1−|s|2arethetransmissionandcouplingcoefficientsofthecoupleroftheSagnacreflectorand˛sis thelossfactorintheringwaveguideoftheSagnacreflector
Fig.6(a)and(b)showsthetransmission,phase,groupdelayandoutputpulsespropagatingoverthestructurewithand withoutSagnacreflector.ItisassumedthatthestructureconsistingofNidenticalmicroringresonators(N=1and2)with thetransmissioncoefficientof1=0.99.ByusingtheSagnacreflector,weobtainthepulsedelaysof43psand83psfor
N=1and2respectively,comparedwith20psand40pswithoutusingtheSagnacreflector
When1=0.9975,theundercoupledconditionoccurs.Therefore,thefastlightcanbeinducedbyusingtheproposed structure.Fig.7(a)and(b)showsthetransmissioncharacteristicsandoutputpulsespropagatingoverthestructurewithand withoutSagnacreflector.Itisshownthatpulseadvancementsof25psand50psareachievedwhentheSagnacreflectoris used(comparedwith12psand24pswithouttheSagnacreflector)
Bycontrollingthecouplingcoefficientsofringresonators,thefastandslowlightcanbeachieved.Thepulsedelayand advancementcanbeincreasedbyNtimesifNidenticalringresonatorsareused.Fig.8showsthetimedelayandadvancement
ofthepulsepropagatingthroughourprosedstructure.WecanseethatbyusingtheSagnacreflector,thepulsedelayand advancementcanbedoubledcomparedwiththeconventionalSCISSORstructure
Toverifytheaccuracyofthetransfermatrixanalysis,wecomparetheresultsobtainedwiththeFDTD.ForourFDTD simulations,theradiusofthemicroringresonatoristobeR=5m,thewaveguidewidthisWa=400nm,thegapbetween themicroringwaveguideandthestraightwaveguideischosentobeg=160nminorderforthepowertransmissioncoupling (||2)tobe||2=0.9asshowninFig.10(a).Herewetakeintoaccountthewavelengthdispersionofthesiliconwaveguide usingtheexpressionNeff()=4.7020−1.6667for=1.5−1.6m(Fig.10(b))
AGaussianlightpulseof15fspulsewidthislaunchedfromtheinputtoinvestigatethetransmissioncharacteristicsof thedevice.Thegridsize x= y=0.02nmand z=0.05arechoseninoursimulations.AsshowninFig.11(a)witha numberofthemicroringresonatorN=1andFig.12(a)withN=2,thetransmissionscalculatedbytheFDTDarequitesimilar
Trang 6Fig 6.Transmission characteristics of the cascaded microring resonators (a) = = 0.99 and (b) output pulses.
Trang 7Fig 7. Transmission characteristics of the cascaded microring resonators (a) = 1 = 0.9975 and (b) output pulses.
Trang 8Fig 8.Time delay and advancement with and without the Sagnac reflector.
Fig 9.Directional coupler used for microring resonator.
Fig 10. FDTD simulations (a) transmission coefficient at different gap and (b) wavelength dispersion of the silicon waveguide with a width of 400 nm (the inset shows the field at = 1.55m).
tothetransmissioncalculatedbytheanalyticaltheory.Figs.11(b)and12(b)showtheFDTDfielddistributionsatonand off-resonances
Thesimulationresultsforthedeviationofthetransmissioncoefficient 2dependingonthewaveguidewidthvariation
WaareshowninFig.13.Duetothemanufacturingtolerances,thevariationinwaveguidewidthoccursandleadingtoa newwaveguidewidthexpressedbyW=Wa± Wa.Addingtothechangeofthetransmissioncoefficient,thedeviation
ofthewaveguidewidthalsoleadstothechangeineffectiveindex.Forapositive Wa,theeffectiveindexisincreased.For anygapandradius,apositive Waleadstoadecreaseinthetransmissioncoefficient.For Wa=+10nm,thetransmission coefficientisdecreasedby0.044forg=120nmand0.037forg=130nmatthesamewidthWa=450nmandradiusR=10m Whilethiscoefficientisdecreasedonlyby0.012iftheringradiusR=5m.Asaresult,thetransmissioncoefficientofthe couplerisquitestableforasmallerringradiusandlargergap.Forawidthvariationwithin±20nm,adeviationofthe
Trang 9Fig 11.FDTD simulation of the proposed structure with one ring resonator and Sagnac reflector.
Fig 12.FDTD simulation of the proposed structure with two ring resonators and Sagnac reflector.
Fig 13. Change of the transmission coefficient and the deviation from the calculated value at Wa = 450 nm as the effect of the width variation.
Trang 10References
[1] J Heebner, R Grover, T Ibrahim, Optical Microresonators: Theory, Fabrication and Applications, Springer, 2008.
[2] Ioannis Chremmos, Otto Schwelb, in: Nikolaos Uzunoglu (Ed.), Photonic Microresonator Research and Applications, Springer, 2010.
[3] Jianyi Yang, Qingjun Zhou, Feng Zhao, et al., Characteristics of optical bandpass filters employing series-cascaded double-ring resonators, Opt Commun 228 (2003) 91–98.
[4] Sang-Yeon Cho, Richard Soref, Interferometric microring-resonant 2 × 2 optical switches, Opt Express 16 (2008) 13304–13314.
[5] Yingtao Hu, Xi Xiao, Hao Xu, et al., High-speed silicon modulator based on cascaded microring resonators, Opt Express 20 (2012) 15079–15085 [6] Tao Wang, Fangfei Liu, Jing Wang, et al., Pulse delay and advancement in SOI microring resonators with mutual mode coupling, J Lightwave Technol.
27 (2009), p 4734.
[7] Hao Shen, Jian-Ping Chen, Xin-Wan Li, et al., Group delay and dispersion analysis of compound high order microring resonator all-pass filter, Opt Commun 262 (2006) 200–205.
[8] Chinda Chaichuay, Preecha P Yupapin, Prajak Saeung, Multi-stage ring resonator all-pass filters for dispersion compensation, Opt Appl XXXIX (2009) 277–286.
[9] Jingya Xie, Linjie Zhou, Zhi Zou, et al., Continuously tunable reflective-type optical delay lines using microring resonators, Opt Express 22 (2014) 817–823.
[10] Robert W Boyd, Daniel J Gauthier, Controlling the velocity of light pulses, Science 326 (November) (2009) 1074–1077.
[11] Salvador Vargas, Carmen Vázquez, Synthesis of optical filters using sagnac interferometer in ring resonator, IEEE Photonics Technol Lett 19 (2007),
p 1877.
[12] Tao Wang, Xiaohui Li, Fangfei Liu, et al., Enhanced fast light in microfiber ring resonator with a Sagnac loop reflector, Opt Express 18 (2010) 16156–16161.
[13] M Javed Akram, M Miskeen Khan, Farhan Saif, Tunable fast and slow light in a hybrid optomechanical system, Phys Rev A 92 (2015), pp 023846- [14] Hiva Shahoei, Dan-Xia Xu, Jens H Schmid, et al., Continuous slow and fast light generation using a silicon-on-insulator microring resonator incorporating a multimode interference coupler, J Lightwave Technol 32 (2014).
[15] Ling Li, Wenjie Nie, Aixi Chen, Transparency and tunable slow and fast light in a nonlinear optomechanical cavity, Sci Rep 6 (2016), Article number: 35090.
[16] A Yariv, Universal relations for coupling of optical power between microresonators and dielectric waveguides, Electron Lett 36 (2000) 321–322 [17] Xin Liu, Mei Kong, He Feng, Transmission and dispersion of coupled double-ring resonators, J Opt Soc Am B 29 (2012) 68–74.
[18] Myungjun Lee, Michael E Gehm, Mark A Neifeld, Systematic design study of all-optical delay line based on Brillouin scattering enhanced cascade coupled ring resonators, J Opt 12 (2010) 1–10.
[19] John Heebner, Robert Boyd, ‘Slow’ and ‘fast’ light in resonator-coupled waveguides, J Mod Opt 2636 (2002) 2629–2636.
[20] Dan-Xia Xu, Jens H Schmid, Graham T Reed, et al., Silicon photonic integration platform—have we found the sweet spot? IEEE J Sel Top Quantum Electron 20 (2014), pp 8100217-.