1. Trang chủ
  2. » Luận Văn - Báo Cáo

Fast and slow light enhancement using cascaded microring resonators with the sagnac reflector

10 6 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 3,47 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Fast and slow light enhancement using cascaded microringDuy-Tien Lea, Manh-Cuong Nguyenb, Trung-Thanh Lec,∗ a Posts and Telecommunications Institute of Technology PTIT and Finance-Bankin

Trang 1

Fast and slow light enhancement using cascaded microring

Duy-Tien Lea, Manh-Cuong Nguyenb, Trung-Thanh Lec,∗

a Posts and Telecommunications Institute of Technology (PTIT) and Finance-Banking University, Hanoi, Viet Nam

b Le Quy Don Technical University, Hanoi, Viet Nam

c International School (IS-VNU), Vietnam National University (VNU), Hanoi, Viet Nam

Article history:

Received 3 September 2015

Received in revised form 31 October 2016

Accepted 7 November 2016

Keywords:

Microring resonator

Fast light

Slow light

Silicon waveguides

FDTD

Transfer matrix method

Multimode interference (MMI)

Microresonators

AcascadedmicroringresonatorbasedonsiliconwaveguideswithanMMI(Multimode Interference)basedSagnacreflectorisproposedinthisstudy.Bycontrollingthecoupling coefficientswiththeusedoftheMMIbasedSagnacreflector,thedoubleofbothpulse delayandadvancementfortheslowandfastlightcanbeachieved.Thenewstructurecan producethefastandslowlightphenomenonononechipwithadoubleofthetimedelay andpulseadvancement.ByusingtheSagnacreflector,thedeviceisverycompact.Transfer matrixmethodandFDTD(FiniteDifferenceTimeDomain)simulationareusedtoobtainthe characteristicsofthedevice.Thetransmission,phase,groupdelayandpulsepropagation areanalyzedindetail.OurFDTDsimulationsshowagoodagreementwiththeanalytical theory

©2016ElsevierGmbH.Allrightsreserved

1 Introduction

Inrecentyears,opticalmicroringresonatorshavebeenofgreatinterestforapplicationsinopticalcommunicationssuchas opticaldelaylines,opticalswitches,modulators,filters,dispersioncompensatorsetc.[1,2].Micro-ringresonatorstructures consistsofanumberofsinglemicro-ringresonatorscascadedinseriesorinparallelcanbeusedforhigherorderfilterswith extendedfreespectralratios[3]orswitching[4],modulatingapplications[5],fastandslowlight[6]

Analysisofthegroupdelayandtransmissioncharacteristicsofcascadedmicroringresonatorsusedforopticalfiltersand dispersioncompensatorshavebeenstudied[7–9].However,thesestructureshavepositivegroupdelayandmainlydesigned forpulsedelayapplications.Slowandfastlightgenerationareemergingasaveryattractiveresearchtopic.Varioustechniques havebeendevelopedtorealizefastlightandslowlightinatomicvaporsandsolid-statematerials[10].Oneapplicationamong thesetechniquesistocontrolthegroupvelocityvgoflightpulsestomakethempropagateeitherveryslow(vg<c)orvery fast(vg>corvgisnegative),wherecisthevelocityoflight

Inthisstudy,weproposeanewcascadedmicroringstructurebasedonsiliconwaveguideswithaSagnacloopreflector TheSagnacloopreflectorhasbeenappliedtomanyapplicationstructuressuchasfilteringandfastlightstructures[11,12]

Bycontrollingthecouplingcoefficientsofthecouplerusedinmicroringresonatorsintheproposedstructure,negativeand positivegroupdelaycanbeobtained.Thismeansthatthelightvelocitycanbecontrolledandthereforethefastandslow

∗ Corresponding author.

E-mail addresses: thanh.le@vnu.edu.vn, thanhvn au@yahoo.com (T.-T Le).

http://dx.doi.org/10.1016/j.ijleo.2016.11.038

0030-4026/© 2016 Elsevier GmbH All rights reserved.

Trang 2

Fig 2.Transmission, phase and group delay characteristics of the single microring resonator.

lightcanbeinducedbythestructure[13–15].Here,weuseaSagnacloopreflectorbasedonan1×2MMI(Multimode Interferencecoupler)attheendofthestructuretoenhancethefastandslowlight.TheuseofanMMIbasedreflectorforthe reflectiontodoublethepulsedelayandpulseadvancement.Itisshownthatthegroupdelay,timedelayandadvancement aredoubledcomparedtothecasewithoutusingtheMMISagnacloopreflector.Weusesiliconmicroringresonatorsbecause

ofhighqualityoffabricationbyusingCMOScompatibleprocessanddevicecompactnesswithahighindexcontrastsystem

2 Design

ThestructureconsistingofN-singlemicroringresonatorscascadedinserieswithaSagnacloopreflectorisproposedin Fig.1(a)

Trang 3

Fig 3. Input and output pulses at the single microring resonator.

2.1 Singlemicroringresonator

ForasinglemicroringresonatorasshowninFig.1(b),theoutputfieldcanberelatedtotheinputfieldbytheexpression [16]

H1=E2

E1 = 1−˛1exp



j1



1−˛11exp

whereE1,E2arethefieldamplitudeattheinputandoutput;1 and1=

1−|1|2arethetransmissionandcoupling coefficientsofthecoupler;˛1 isthelossfactorintheringwaveguideand1=2

NeffLR1istheaccumulatedphaseshift overtheringwaveguide.Neff istheeffectiverefractiveindexofthewaveguide,isthewavelengthandLR1=2R1isthe circumferenceoftheringwaveguide

Theeffectivephaseshiftofthemicroringresonatorcanbedefinedby

single=arg

2

E1



=artan



˛12sin (ω)



1+˛1 

−(1+2)˛1cos (ω)



(2)

Thenormalizedgroupdelayisgivenbyn=−dsingle

dω Theabsolutegroupdelayisd=Tn,whereTistheunitdelayofthe signalpropagatingoverthemicroringwaveguide.Theresonanceisoccurredatthephase1=2m,wheremisaninteger

Atresonance,1>˛1theringresonatorandwaveguideisunder-coupledandleadingtopulseadvancementorfastlight; when1<˛1,theyareover-coupledandleadingtopulsedelayorslowlight;thecriticalcouplingoccurswhen1=˛1 The transmission, phase and group delay of the single microring resonator at the transmission coefficients 1= 0.9975,0.9966and0.99respectivelyareshowninFig.2.Theparametersaresetasfollows:thelossfactorofthewaveguide

˛1=1dB/cm,thelengthofthemicroringwaveguideLR1=300␮m.Thesimulationshowsthatthepositiveandnegative groupdelaycanbeachievedbyadjustingthecouplingcoefficientofthecoupler.Itisassumedthatasiliconwaveguidewith

aheightof220nmandwidthof400nmandrefractiveindexNeff =2.25

Wenowinvestigatethepulsepropagationoverthesingleringresonator.ItisassumedthattheinputpulseisGaussian andcanbeexpressedas[17]

Trang 4

Fig 4.Transmission characteristics of the cascaded microring resonators (a)  =  1 = 0.99 and (b)  =  1 = 0.9975.

where0istheresonancewavelengthofthesinglemicroringresonator,THW=Tb/2isthebithalfwidthat1/e2intensityand

Tbisthebitperiod.FromthesimulationsofFig.2,theresonancewavelengthis0=1.54817␮m.Theinputandcorresponding outputpulseswiththetransmissioncoefficients1=0.9975, 0.9966and0.99areshowninFig.3,wheretheinputpulse widthTp=50ps[18].Thesimulationsshowthatpulsedelayof20pscanbeobtainedwhen1=0.99andwhen1=0.9975 thepulseadvancementof12psisobtained

2.2 Cascadedmicroringresonators

Asidecoupledintegratedspacedsequenceofresonators(SCISSOR)orcascadedmicroringresonatorwithouttheSagnac reflectorhasbeenfirstlyproposedbyHeebnerandBoyd[19].ItwasshownthatbyusingSCISSORstructure,fastandslow

Trang 5

Fig 5.Input and output pulses at the cascaded microring resonator structure.

lightcanbeobtained.Here,weconsideraSCISSORasshowninFig.1withaSagnacloopreflector.Forsimplicity,weassume thatNringresonatorsareidentical.Asaresult,thetransferfunctionoftheSCISSORcanbewrittenby

HSCISSOR=H1H2 HN=(E2

E1)

N

=



−˛exp

j

1−˛exp

j

(4)

Here=1and˛=˛1isthelossfactorintheringwaveguideand=2

NeffLR Thetransmission,phaseandgroupdelayofthecascadedmicroringresonatorforN=1,2,3areshowninFigs.4and5.It

isassumedthatthetransmissioncoefficientofthecoupleris1=0.99and0.9975.Thesimulationresultsshowthatslow andfastlightareinducedbyadjustingthecouplingcoefficients.Inaddition,thepulsedelayandpulseadvancementare increasedbyNtimescomparedwiththesinglemicroringresonator

2.3 CascadedmicroringresonatorswiththeSagnacreflector

Fig.1showsthecascadedmicroringresonatorwiththeSagnacreflector.Inthisstudy,weusean1×2MMIcouplerin theSagnacreflector.Asaresult,thetransferfunctionoftheproposedstructureinFig.1canbeexpressedby

H=(2j˛sss)



−˛exp

j

1−˛exp

j

2N

(5)

wheresands=

1−|s|2arethetransmissionandcouplingcoefficientsofthecoupleroftheSagnacreflectorand˛sis thelossfactorintheringwaveguideoftheSagnacreflector

Fig.6(a)and(b)showsthetransmission,phase,groupdelayandoutputpulsespropagatingoverthestructurewithand withoutSagnacreflector.ItisassumedthatthestructureconsistingofNidenticalmicroringresonators(N=1and2)with thetransmissioncoefficientof1=0.99.ByusingtheSagnacreflector,weobtainthepulsedelaysof43psand83psfor

N=1and2respectively,comparedwith20psand40pswithoutusingtheSagnacreflector

When1=0.9975,theundercoupledconditionoccurs.Therefore,thefastlightcanbeinducedbyusingtheproposed structure.Fig.7(a)and(b)showsthetransmissioncharacteristicsandoutputpulsespropagatingoverthestructurewithand withoutSagnacreflector.Itisshownthatpulseadvancementsof25psand50psareachievedwhentheSagnacreflectoris used(comparedwith12psand24pswithouttheSagnacreflector)

Bycontrollingthecouplingcoefficientsofringresonators,thefastandslowlightcanbeachieved.Thepulsedelayand advancementcanbeincreasedbyNtimesifNidenticalringresonatorsareused.Fig.8showsthetimedelayandadvancement

ofthepulsepropagatingthroughourprosedstructure.WecanseethatbyusingtheSagnacreflector,thepulsedelayand advancementcanbedoubledcomparedwiththeconventionalSCISSORstructure

Toverifytheaccuracyofthetransfermatrixanalysis,wecomparetheresultsobtainedwiththeFDTD.ForourFDTD simulations,theradiusofthemicroringresonatoristobeR=5␮m,thewaveguidewidthisWa=400nm,thegapbetween themicroringwaveguideandthestraightwaveguideischosentobeg=160nminorderforthepowertransmissioncoupling (||2)tobe||2=0.9asshowninFig.10(a).Herewetakeintoaccountthewavelengthdispersionofthesiliconwaveguide usingtheexpressionNeff(␭)=4.7020−1.6667for=1.5−1.6␮m(Fig.10(b))

AGaussianlightpulseof15fspulsewidthislaunchedfromtheinputtoinvestigatethetransmissioncharacteristicsof thedevice.Thegridsize x= y=0.02nmand z=0.05arechoseninoursimulations.AsshowninFig.11(a)witha numberofthemicroringresonatorN=1andFig.12(a)withN=2,thetransmissionscalculatedbytheFDTDarequitesimilar

Trang 6

Fig 6.Transmission characteristics of the cascaded microring resonators (a)  =  = 0.99 and (b) output pulses.

Trang 7

Fig 7. Transmission characteristics of the cascaded microring resonators (a)  =  1 = 0.9975 and (b) output pulses.

Trang 8

Fig 8.Time delay and advancement with and without the Sagnac reflector.

Fig 9.Directional coupler used for microring resonator.

Fig 10. FDTD simulations (a) transmission coefficient at different gap and (b) wavelength dispersion of the silicon waveguide with a width of 400 nm (the inset shows the field at  = 1.55␮m).

tothetransmissioncalculatedbytheanalyticaltheory.Figs.11(b)and12(b)showtheFDTDfielddistributionsatonand off-resonances

Thesimulationresultsforthedeviationofthetransmissioncoefficient 2dependingonthewaveguidewidthvariation

WaareshowninFig.13.Duetothemanufacturingtolerances,thevariationinwaveguidewidthoccursandleadingtoa newwaveguidewidthexpressedbyW=Wa± Wa.Addingtothechangeofthetransmissioncoefficient,thedeviation

ofthewaveguidewidthalsoleadstothechangeineffectiveindex.Forapositive Wa,theeffectiveindexisincreased.For anygapandradius,apositive Waleadstoadecreaseinthetransmissioncoefficient.For Wa=+10nm,thetransmission coefficientisdecreasedby0.044forg=120nmand0.037forg=130nmatthesamewidthWa=450nmandradiusR=10␮m Whilethiscoefficientisdecreasedonlyby0.012iftheringradiusR=5␮m.Asaresult,thetransmissioncoefficientofthe couplerisquitestableforasmallerringradiusandlargergap.Forawidthvariationwithin±20nm,adeviationofthe

Trang 9

Fig 11.FDTD simulation of the proposed structure with one ring resonator and Sagnac reflector.

Fig 12.FDTD simulation of the proposed structure with two ring resonators and Sagnac reflector.

Fig 13. Change of the transmission coefficient and the deviation from the calculated value at Wa = 450 nm as the effect of the width variation.

Trang 10

References

[1] J Heebner, R Grover, T Ibrahim, Optical Microresonators: Theory, Fabrication and Applications, Springer, 2008.

[2] Ioannis Chremmos, Otto Schwelb, in: Nikolaos Uzunoglu (Ed.), Photonic Microresonator Research and Applications, Springer, 2010.

[3] Jianyi Yang, Qingjun Zhou, Feng Zhao, et al., Characteristics of optical bandpass filters employing series-cascaded double-ring resonators, Opt Commun 228 (2003) 91–98.

[4] Sang-Yeon Cho, Richard Soref, Interferometric microring-resonant 2 × 2 optical switches, Opt Express 16 (2008) 13304–13314.

[5] Yingtao Hu, Xi Xiao, Hao Xu, et al., High-speed silicon modulator based on cascaded microring resonators, Opt Express 20 (2012) 15079–15085 [6] Tao Wang, Fangfei Liu, Jing Wang, et al., Pulse delay and advancement in SOI microring resonators with mutual mode coupling, J Lightwave Technol.

27 (2009), p 4734.

[7] Hao Shen, Jian-Ping Chen, Xin-Wan Li, et al., Group delay and dispersion analysis of compound high order microring resonator all-pass filter, Opt Commun 262 (2006) 200–205.

[8] Chinda Chaichuay, Preecha P Yupapin, Prajak Saeung, Multi-stage ring resonator all-pass filters for dispersion compensation, Opt Appl XXXIX (2009) 277–286.

[9] Jingya Xie, Linjie Zhou, Zhi Zou, et al., Continuously tunable reflective-type optical delay lines using microring resonators, Opt Express 22 (2014) 817–823.

[10] Robert W Boyd, Daniel J Gauthier, Controlling the velocity of light pulses, Science 326 (November) (2009) 1074–1077.

[11] Salvador Vargas, Carmen Vázquez, Synthesis of optical filters using sagnac interferometer in ring resonator, IEEE Photonics Technol Lett 19 (2007),

p 1877.

[12] Tao Wang, Xiaohui Li, Fangfei Liu, et al., Enhanced fast light in microfiber ring resonator with a Sagnac loop reflector, Opt Express 18 (2010) 16156–16161.

[13] M Javed Akram, M Miskeen Khan, Farhan Saif, Tunable fast and slow light in a hybrid optomechanical system, Phys Rev A 92 (2015), pp 023846- [14] Hiva Shahoei, Dan-Xia Xu, Jens H Schmid, et al., Continuous slow and fast light generation using a silicon-on-insulator microring resonator incorporating a multimode interference coupler, J Lightwave Technol 32 (2014).

[15] Ling Li, Wenjie Nie, Aixi Chen, Transparency and tunable slow and fast light in a nonlinear optomechanical cavity, Sci Rep 6 (2016), Article number: 35090.

[16] A Yariv, Universal relations for coupling of optical power between microresonators and dielectric waveguides, Electron Lett 36 (2000) 321–322 [17] Xin Liu, Mei Kong, He Feng, Transmission and dispersion of coupled double-ring resonators, J Opt Soc Am B 29 (2012) 68–74.

[18] Myungjun Lee, Michael E Gehm, Mark A Neifeld, Systematic design study of all-optical delay line based on Brillouin scattering enhanced cascade coupled ring resonators, J Opt 12 (2010) 1–10.

[19] John Heebner, Robert Boyd, ‘Slow’ and ‘fast’ light in resonator-coupled waveguides, J Mod Opt 2636 (2002) 2629–2636.

[20] Dan-Xia Xu, Jens H Schmid, Graham T Reed, et al., Silicon photonic integration platform—have we found the sweet spot? IEEE J Sel Top Quantum Electron 20 (2014), pp 8100217-.

Ngày đăng: 17/03/2021, 17:31

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm