Keywords: Multimode interference couplers, silicon wire, CMOS technology, optical couplers, Fano resonance, EIT INTRODUCTION Devices based on optical microring resonators hare attracte
Trang 1Fano Resonance and EIT-like effect based on 4x4 Multimode Interference
Structures
1 Duy-Tien Le and 2 *Trung-Thanh Le
1 International School (VNU-IS), Vietnam National University (VNU), Hanoi, Vietnam
2 International School (VNU-IS), Vietnam National University (VNU), Hanoi, Vietnam.
2 ORCID: 0000-0003-0147-688X
Abstract
We propose a new structure for creating the Fano resonance
and electromagnetically induced transparency (EIT) effect
The structure is based on 4x4 multimode interference couplers
The proposed devices have advantages of compactness, large
tolerance fabrication The transfer matrix method (TMM) and
numerical methods are used for analytical analysis and design
of the device
Keywords: Multimode interference couplers, silicon wire,
CMOS technology, optical couplers, Fano resonance, EIT
INTRODUCTION
Devices based on optical microring resonators hare attracted
considerable attention recently, both as compact and highly
sensitive sensors and for optical signal processing applications
[1] The resonance line shape of a conventional microring
resonator is symmetrical with respect to its resonant
wavelength However, microring resonator coupled Mach
Zehnder interferometers can produce a very sharp asymmetric
Fano line shape that are used for improving optical switching
and add-drop filtering [2, 3]
The strong sensitivity of Fano resonance to local media brings
about a high figure of merit (FOM), which promises extensive
applications in optical devices such as optical switches [4]
Fano resonances have long been recognized in grating
diffraction and dielectric particles elastic scattering phenomena
The physics of the Fano resonance is explained by an
interference between a continuum and discrete state [5] The
simplest realization is a one dimensional discrete array with a
side coupled defect In such a system scattering waves can
either bypass the defect or interact with it Recently, optical
Fano resonances have also been reported in various optical
micro-cavities including integrated waveguide-coupled
microcavities [6], prism-coupled square micro-pillar resonators,
multimode tapered fiber coupled micro-spheres and Mach
Zehnder interferometer (MZI) coupled micro-cavities [7],
that optical Fano resonances have niche applications in resonance line shape sensitive bio-sensing, optical channel switching and filtering [10]
In addition, electromagnetically induced transparency (EIT) has been intensively investigated in recent decades [11, 12] Extensive research efforts have been made in fundamental physics and exciting applications These include quantum information, lasing without inversion, optical delay, slow light
or storing light, nonlinearity enhancement and precise spectroscopy, pushing frontiers in quantum mechanics and photonics [12]
EIT was first observed in atomic media [13] EIT-like effects are identified as a universal phenomenon in coupled resonant systems in optics [14], mechanics and electrical circuits [15], plasmonics, metamaterials and hybrid configurations [16]
In this paper, we propose a new structure based on 4x4 multimode interference couplers to produce Fano resonances and EIT like effect We further develop the EIT structure by cascading the two Fano resonances based on our recent research [17] The design of the devices is to use silicon waveguides that is compatible with CMOS technology The proposed device is analyzed and optimized using the transfer matrix method, the beam propagation method (BPM) and FDTD [18]
STRUCTURE AND OPERATING PRINCIPLES
A schematic of the structure is shown in Fig 1 The proposed structure contains one 4x4 MMI coupler connected to a second 4x4 MMI coupler via four arms, where
i i i i
and output waveguides Two microring resonators are introduced to two upper arms and phase shifters 1, 2 are in the others
Here, it is shown that by introducing two phase shifters to two arms, we can achieve two independent tunable Fano resonance
Trang 2the two independent Fano resonance line shapes, we achieve
the EIT like effect as shown in Fig.1
Figure 1: Schematic diagram of a microring resonator coupled
4x4 GMZI structure
Let consider a single ring resonator in the first arm of GMZI
structure of Fig.1, the field amplitudes at input and output of
the microring resonator can be expressed by using the transfer
matrix method [19]
(1)
b ' exp( j )c ' (2) Where 1 and 1 are the amplitude transmission and coupling
coefficients of the coupler, respectively; for a lossless
coupler, 12 12 1 The transmission loss factor 1 is
1 exp( 0 1L )
, where L1 R1 is the length of the
microring waveguide, R1 is the radius of the microring
resonator and 0(dB / cm) is the transmission loss coefficient
1 0 1L
waveguide, where 0 2 neff /, is the optical wavelength
and neff is the effective refractive index
Therefore, the transfer response of the single microring
resonator can be given by
The effective phase 1 caused by the microring resonator is
defined as the phase argument of the field transmission factor,
which is
As a result, the phase difference between two arms 1 and 4 of
the GMZI is expressed by
1
1 1 1
1
1 1 1
sin
cos sin
(5)
By the same analysis, the phase difference between two arms 2 and 3 of the GMZI is expressed by
2 2 2
sin
cos sin
(6)
The MMI coupler consists of a multimode optical waveguide that can support a number of modes In order to launch and extract light from the multimode region, a number of single mode access waveguides are placed at the input and output planes If there are N input waveguides and M output waveguides, then the device is called an NxM MMI coupler The operation of optical MMI coupler is based on the self-imaging principle [20, 21] Self-self-imaging is a property of a multimode waveguide by which as input field is reproduced in single or multiple images at periodic intervals along the propagation direction of the waveguide The central structure of the MMI filter is formed by a waveguide designed to support a large number of modes
It is assumed that two 4x4 MMI couplers have the same width
MMI
W and length MMI 3L
L
2
The silicon waveguide is used for the design The parameters used in the designs are as follows: the waveguide has a standard silicon thickness of
co
a
designs are for the TE polarization at a central optical wavelength 1550nm By using the BPM simulation, we showed that the width of the MMI is optimized to be
MMI
W =6µm for compact and high performance device The 3D-BPM simulations for this cascaded 4x4 MMI coupler are shown in Fig 2(a) for the signal at input port 1 and Fig 2(b) for the signal at input port 2 The optimised length of each MMI coupler is found to be LMMI141.7 m
Trang 3Figure 2: BPM simulations for 4x4 cascaded MMI coupler
used for microring resonator coupled MZI for input 1 and 2
The relations between the complex amplitudes at the input
ports and output ports can be expressed in terms of the transfer
matrices of the 3dB MMI couplers and the phase shifters as
follows
Similarly, the complex amplitudes at input and output ports 2
and 3 can be expressed by
Here, the transmission loss factor 2 exp(0L )2 , where
L R is the length of the microring waveguide in arm 2,
2
R is the radius of the microring resonator and 0(dB / cm) is
the transmission loss coefficient 2 0L2 is the phase
accumulated over the microring waveguide
As a result, the transmissions at the bar and cross output ports
of the structure in Fig.1 are given by
2
2
It will be shown that the transmissions have the Fano resonance
line shape and the shape can be tuned by tuning the phase
shifters 1 and 2
SIMULATION RESULTS AND DISCUSSION
Without loss of generality, we choose the microring radius
1
R 5 mfor compact device but still low loss [22], effective
refractive index calculated to be neff 2.2559, 1 0.707
(3dB coupler) and 1 0.98 We vary the phase shift 1 from
0 to 1.5 The transmission at bar port of the device are
The phase shifter can be made from thermos-optic effect or free carrier effect in silicon waveguide [23] These Fano resonance occur from interference between the optical resonance in the arm coupled with microring resonator and the propagating mode in the other arm From the simulation results, we can see that the continuous transition from an asymmetric to symmetric and toward a reverse line shape can be achieved by changing the phase shifter in the straight waveguide 1 Therefore, we can control a Fano resonance by adjusting the phase shift In addition, by choosing the phase shift appropriately, a sharp Fano line shape can be obtained This means that the transmitted power at the output port is very sensitive to the resonance wavelength and thus optical sensors based on this property can provide a high sensitivity
Fig 4 shows the transmission spectra of the device at the bar port for different coupling ratio of the microring resonator with the MZI arm It can be seen that a very sharp Fano line can be achieved if the coupling coefficient of the coupler 1 is small The coupling coefficient of the coupler can be tuned by adjusting the length of the directional coupler or by using the MMI coupler [24] Fig.5 shows the controlling of the coupling and transmission coefficients by changing the gap and the length of the directional coupler
Figure 3: Transmission spectra via the device at the bar port
for 1 0, 1 0.5 , 1 1.5
Figure 4: Transmission spectra via the device at the bar port
Trang 4Figure 5: Power transfer between the straight and ring
waveguides dependence gap and waveguide width, R=5µm
Now we investigate the behavior of the device when cascading
the two 4x4 MMI coupler The EIT effect can be created as
shown in Fig.6
Figure 6: EIT effect created from the structure
In our FDTD simulation, we take into account the wavelength
dispersion of the silicon waveguide We employ the design of
the directional coupler presented in the previous section as the
input for the FDTD A Gaussian light pulse of 15fs pulse width
is launched from the input to investigate the transmission
characteristics of the device The grid size x y 0.02nm
simulations have a good agreement with the analytic analysis
Figure 7: FDTD simulations of the device
CONCLUSION
This paper has presented a new structure for achieving tunable Fano resonance line shapes and EIT like effect The proposed structure is based on 4x4 multimode interference couplers By cascading the two independent Fano resonances, the EIT effect
is achieved This design of the proposed device is based on silicon waveguide The whole device structure can be fabricated on the same chip using CMOS technology The transfer matrix method (TMM) and beam propagation method (BPM) are used for analytical analysis and design of the device Then the FDTD method is used to compare with the analytic method The proposed structure is useful for potential applications such as highly sensitive sensors and low power all-optical switching
ACKNOWLEDGEMENTS
This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number “103.02-2013.72" and Vietnam National University, Hanoi (VNU) under project number QG.15.30
Trang 5REFERENCES
[1] D.G Rabus, Integrated Ring Resonators – The
Compendium: Springer-Verlag, 2007
[2] Ying Lu, Jianquan Yao, Xifu Li et al., "Tunable
asymmetrical Fano resonance and bistability in a
microcavity-resonator-coupled Mach-Zehnder
interferometer," Optics Letters, vol 30, pp 3069-3071,
2005
[3] Linjie Zhou and Andrew W Poon, "Fano resonance-based
electrically reconfigurable add-drop filters in silicon
microring resonator-coupled Mach-Zehnder
interferometers," Optics Letters, vol 32, pp 781-783,
2007
[4] Andrey E Miroshnichenko, Sergej Flach, and Yuri S
Kivshar, "Fano resonances in nanoscale structures,"
Review Modern Physics, vol 82, pp 2257-, 2010
[5] Yi Xu and Andrey E Miroshnichenko, "Nonlinear
Mach-Zehnder-Fano interferometer," Europhysics Letters, vol
97, pp 44007-, 2012
[6] Shanhui Fan, "Sharp asymmetric line shapes in
side-coupled waveguide-cavity systems," Applied Physics
Letters, vol 80, pp 908 - 910, 2002
[7] Kam Yan Hon and Andrew Poon, "Silica polygonal
micropillar resonators: Fano line shapes tuning by using a
Mach -Zehnder interferometer," in Proceedings of SPIE
Vol 6101, Photonics West 2006, Laser Resonators and
Beam Control IX, San Jose, California, USA, 25-26
January, 2006
[8] CHEN Zong-Qiang, QI Ji-Wei, CHEN Jing et al., "Fano
Resonance Based on Multimode Interference in
Symmetric Plasmonic Structures and its Applications in
Plasmonic Nanosensors," Chinese Physics Letters, vol
30, 2013
[9] Bing-Hua Zhang, Ling-Ling Wang, Hong-Ju Li et al.,
"Two kinds of double Fano resonances induced by an
asymmetric MIM waveguide structure," Journal of
Optics, vol 18, 2016
[10] S Darmawan, L Y M Tobing, and D H Zhang,
"Experimental demonstration of
coupled-resonator-induced-transparency in silicon-on-insulator based
ring-bus-ring geometry," Optics Express, vol 19, pp
17813-17819, 2011
[11] Xiaoyan Zhou, Lin Zhang, Wei Pang et al., "Phase
characteristics of an electromagnetically induced
transparency analogue in coupled resonant systems," New
Journal of Physics, vol 15, p 103033, 2013
[12] Yonghua Wang, Chenyang Xue, Zengxing Zhang et al.,
"Tunable optical analog to electromagnetically induced
Scientific Reports, Nature, vol 6, 2016
[13] S E Harris, J E Field, and A Imamoğlu, "Nonlinear optical processes using electromagnetically induced transparency," Physical Review Letters, vol 64, pp
1107-, 1990
[14] Alexander I Lvovsky, Barry C Sanders, and Wolfgang Tittel, "Optical quantum memory," Nature Photonics, vol
3, pp 706-714, 2009
[15] K M Birnbaum, A Boca, R Miller et al., "Photon
blockade in an optical cavity with one trapped atom,"
Nature, vol 436, pp 87-90, 2005
[16] Dimitra A Ketzakia, Odysseas Tsilipakos, Traianos V Yioultsis et al., "Electromagnetically induced
transparency with hybrid silicon-plasmonic traveling-wave resonators," Journal of Applied Physics, vol 114,
pp 113107-, 2013
[17] Trung-Thanh Le and Laurence Cahill, "Generation of two Fano resonances using 4x4 multimode interference structures on silicon waveguides," Optics Communications, vol 301-302, pp 100-105, 2013
[18] W.P Huang, C.L Xu, W Lui et al., "The perfectly
matched layer (PML) boundary condition for the beam propagation method," IEEE Photonics Technology Letters, vol 8, pp 649 - 651, 1996
[19] A Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electronics Letters, vol 36, pp 321–322,
2000
[20] M Bachmann, P A Besse, and H Melchior, "General self-imaging properties in N x N multimode interference couplers including phase relations," Applied Optics, vol
33, pp 3905-, 1994
[21] L.B Soldano and E.C.M Pennings, "Optical multi-mode interference devices based on self-imaging :principles and applications," IEEE Journal of Lightwave Technology,
vol 13, pp 615-627, Apr 1995
[22] Qianfan Xu, David Fattal, and Raymond G Beausoleil,
"Silicon microring resonators with 1.5-µm radius," Optics Express, vol 16, pp 4309-4315, 2008
[23] Sang-Yeon Cho and Richard Soref, "Interferometric microring-resonant 2×2 optical switches," Optics Express,
vol 16, pp 13304-13314, 2008
[24] T.T Le, L.W Cahill, and D Elton, "The Design of 2x2 SOI MMI couplers with arbitrary power coupling ratios,"
Electronics Letters, vol 45, pp 1118-1119, 2009