1. Trang chủ
  2. » Luận Văn - Báo Cáo

Xây dựng bộ câu hỏi dạng pisa định hướng phát triển năng lực phát hiện và giải quyết vấn đề cho học sinh phần tổ hợp xác suất

94 27 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 94
Dung lượng 1,63 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Mặt khác trong dạy học Toán, mà cụ thể là: dạy học khái niệm, dạy học định lí, và dạy học giải bài tập Toán, mỗi cái có một vai trò quan trọng riêng, một ý nghĩa nhất định trong việc góp

Trang 1

ĐẠI HỌC QUỐC GIA HÀ NỘI

TRƯỜNG ĐẠI HỌC GIÁO DỤC

VŨ THỊ THU HƯỜNG

XÂY DỰNG BỘ CÂU HỎI ĐỊNH DẠNG PISA ĐỊNH HƯỚNG PHÁT TRIỂN NĂNG LỰC PHÁT HIỆN VÀ GIẢI QUYẾT VẤN ĐỀ

CHO HỌC SINH PHẦN TỔ HỢP – XÁC SUẤT

LUẬN VĂN THẠC SĨ SƯ PHẠM TOÁN

HÀ NỘI – 2018

Trang 2

ĐẠI HỌC QUỐC GIA HÀ NỘI

TRƯỜNG ĐẠI HỌC GIÁO DỤC

VŨ THỊ THU HƯỜNG

XÂY DỰNG BỘ CÂU HỎI ĐỊNH DẠNG PISA ĐỊNH HƯỚNG PHÁT TRIỂN NĂNG LỰC PHÁT HIỆN VÀ GIẢI QUYẾT VẤN ĐỀ

CHO HỌC SINH PHẦN TỔ HỢP – XÁC SUẤT

LUẬN VĂN THẠC SĨ SƯ PHẠM TOÁN CHUYÊN NGÀNH: LÝ LUẬN VÀ PHƯƠNG PHÁP

DẠY HỌC BỘ MÔN TOÁN

Mã số: 8.14.01.11

Người hướng dẫn khoa học: PGS.TSKH Vũ Đình Hòa

HÀ NỘI - 2018

Trang 3

Xin gửi tới Ban Giám hiệu cùng tập thể giáo viên Trường Trung học Phổ thông Phù Cừ, tỉnh Hưng Yên lời cảm ơn sâu sắc vì đã tạo điều kiện thuận lợi giúp đỡ tác giả thu thập số liệu cũng như những tài liệu nghiên cứu cần thiết Xin ghi nhận sự giúp đỡ quý báu của các học viên lớp cao học Lý luận

và phương pháp dạy học (bộ môn Toán) khóa 11, Trường Đại học Giáo dục Tác giả cũng xin gửi lời cảm ơn tới gia đình, bạn bè đã quan tâm, ủng hộ tác giả hoàn thành nhiệm vụ

Tuy đã có nhiều cố gắng, nhưng luận văn cũng không tránh khỏi những thiếu sót cần góp ý, sửa chữa Tác giả rất mong muốn nhận được những ý kiến đóng góp quý báu của các thầy cô, các bạn bè đồng nghiệp và đọc giả để luận văn này hoàn thiện hơn

Xin chân thành cảm ơn!

Học viên

Vũ Thị Thu Hường

Trang 4

ii

MỤC LỤC

LỜI CẢM ƠN i

MỤC LỤC ii

DANH MỤC BẢNG v

DANH MỤC CÁC SƠ ĐỒ v

DANH MỤC CÁC HÌNH vi

MỞ ĐẦU 1

Chương 1: CƠ SỞ LÍ LUẬN VÀ THỰC TIỄN 6

1.1 Một số vấn đề lý luận 6

1.1.1 Năng lực, năng lực toán học, năng lực phát hiện và giải quyết vấn đề, năng lực phát hiện và giải quyết vấn đề trong toán học 6

1.1.2 Dạy học phát hiện và giải quyết vấn đề 14

1.1.3 PISA 16

1.1.4 Một vài nét chính về nội dung của Toán học trong PISA 17

1.2 Một số vấn đề thực tế 22

1.2.1 Vai trò, vị trí, nội dung của chủ đề Tổ hợp – Xác suất trong chương trình toán học phổ thông 22

1.2.2 Tổng quan về thực trạng việc dạy học phần Tổ hợp – Xác suất ở trường phổ thông 23

1.2.3 Tổng quan về việc tiếp cận các dạng đề thi của PISA ở trường phổ thông 25

Kết luận Chương 1 26

Chương 2: XÂY DỰNG BỘ CÂU HỎI DẠNG PISA ĐỊNH HƯỚNG PHÁT TRIỂN NĂNG LỰC PHÁT HIỆN VÀ GIẢI QUYẾT VẤN ĐỀ CHO HỌC SINH PHẦN TỔ HỢP – XÁC SUẤT 27

2.1 Nguyên tắc xây dựng bộ câu hỏi dạng PISA định hướng phát triển năng lực phát hiện và giải quyết vấn đề cho học sinh phần Tổ hợp – Xác suất 27 2.1.1 Nguyên tắc 1: Đảm bảo tính khoa học, tính tư tưởn, tính thực tiễn 27

Trang 5

iii

2.1.2 Nguyên tắc 2: Đảm bảo sự thống nhất giữa cụ thể và trừu tượng 31

2.1.3 Nguyên tắc 3: Đảm bảo sự thống nhất giữ tính đồng loạt và tính phân hóa 33

2.1.4 Nguyên tắc 4: Đảm bảo sự thống nhất giữa tính vừa sức và tính yêu cầu 34

2.1.5 Nguyên tắc 5: Đảm bảo sự thống nhất giữa vai trò chủ đạo của giáo viên và tính tự giác, tích cực, chủ động của học sinh 35

2.2 Biện pháp xây dựng bộ câu hỏi dạng PISA định hướng phát triển năng lực phát hiện và giải quyết vấn đề cho học sinh phần Tổ hợp – Xác suất 36

2.2.1 Biện pháp 1: Làm cho học sinh nắm vững các kiến thức cơ bản về Tổ hợp – Xác suất 36

2.2.2 Biện pháp 2: Tăng cường huy động các kiến thức của nhiều lĩnh vực khác nhau 47

2.2.3 Biện pháp 3: Giúp học sinh thấy được tính ứng dụng thực tiễn của kiến thức Tổ hợp – Xác suất 49

2.2.4 Biện pháp 4: Hướng dẫn học sinh phát hiện và khắc phục sai lầm 50

Kết luận chương 2 56

Chương 3 THỰC NGHIỆM SƯ PHẠM 57

3.1 Mục đích và nhiệm vụ thực nghiệm 57

3.1.1 Mục đích thực nghiệm 57

3.1.2 Nhiệm vụ thực nghiệm 57

3.2 Tổ chức và nội dung thực nghiệm 57

3.2.1 Tổ chức thực nghiệm 57

3.2.2 Nội dung thực nghiệm 57

3.2.3 Một số đề kiểm tra, đánh giá học sinh với các câu hỏi dạng PISA phần Tổ hợp – Xác suất 73

3.3 Tổ chức triển khai thực nghiệm sự phạm 76

3.4 Đánh giá kết quả thực nghiệm sư phạm 76

3.4.1 Kết quả bài kiểm tra, đánh giá học sinh 76

3.4.2 Phân tích số liệu và đưa ra kết luận sư phạm 76

Trang 6

iv

Kết luận chương 3 78

KẾT LUẬN VÀ KHUYẾN NGHỊ 79

1 Kết luận 79

2 Khuyến nghị 80

TÀI LIỆU THAM KHẢO 81

PHỤ LỤC 83

Trang 7

v

DANH MỤC BẢNG

Bảng 1.1: Các thành tố, tiêu chí và mức độ của năng lực Phát hiện và giải quyết vấn đề 11 Bảng 1.2 Các cấp độ năng lực Toán học phổ thông trong PISA 20 Bảng 1.3: Bảng thống kê phương pháp chủ yếu dạy học chủ đề Tổ hợp – Xác suất 24 Bảng 1.4: Bảng thống kê mức độ tiếp thu của học sinh sau khi học chủ đề Tổ hợp – Xác suất 24 Bảng 1.5: Bảng thống kê mức độ quan tâm đến ra đề thi tiếp cận dạng đề thi PISA của giáo viên 26 Bảng 3.1 Bảng nội dung và kế hoạch thực nghiệm 58 Bảng 3.2 Bảng ma trận đề kiểm tra, đánh giá học sinh 73 Bảng 3.3 Bảng thống kê kết quả kiểm tra, đánh giá học sinh các lớp thực nghiệm 11 A1 và 11 A3 76 Bảng 3.4 Bảng thống kê kết quả kiểm tra, đánh giá học sinh các lớp đối chứng 11 A2 và 11 A4 76 Bảng 3.5 Bảng tỉ lệ phần trăm các mức độ của bài kiểm tra 77

DANH MỤC CÁC SƠ ĐỒ

Sơ đồ 1.1: Cấu trúc của năng lực Toán học: 9

Sơ đồ 2.1: Mối quan hệ giữa thực tiễn và Toán học 27

Trang 8

vi

DANH MỤC CÁC HÌNH

Hình 2.1 Bài toán Đầu phát bị lỗi 29

Hình 2.2 Bài toán Ván trƣợt 31

Hình 2.3: Bài toán những chiếc kẹo màu 32

Hình 2.4 Đảo Phú Quốc 35

Hình 2.5 Bài toán 3 chiếc bánh và 5 chiếc kẹo 37

Hình 2.6 Bài toán kệ đồ 38

Hình 2.7 Bài toán cặp đôi thanh lịch 40

Hình 2.8 Bài toán xổ số Vietlot 41

Hình 2.9 Bài toán Trò chơi bốc bóng 42

Hình 2.10 Bài toán Chọn đồ dự tiệc 44

Hình 2.11 Bài toán Kỳ thi Quốc gia 2018 45

Hình 2.12 Bài toán Giải thi đấu bóng bàn 45

Hình 2.13 Trò chơi Chiếc nón kỳ diệu 46

Hình 2.14 : Sơ đồ truyền máu 48

Hình 2.15 Minh họa tính trạng các loại hoa 49

Hình 2.16 Bài toán súc xắc 53

Hình 3.1 Biểu đồ hình cột điểm số của các lớp đối chứng và thực nghiệm 77

Trang 9

Trong đổi mới giáo dục, ở hầu khắp các nước trên thế giới, người ta rất quan tâm đến bồi dưỡng năng lực giải quyết vấn đề cho học sinh thông qua các môn học, thể hiện đặc biệt rõ nét ở trong quan điểm trình bày kiến thức và phương pháp dạy học thông qua chương trình, sách giáo khoa

Raja Roy Singh trong cuốn “Nền giáo dục cho thế kỉ XXI - Những triển

vọng của Châu Á - Thái Bình Dương” đã khẳng định: “Để đáp ứng được

những đòi hỏi mới được đặt ra do sự bùng nổ kiến thức và sáng tạo ra kiến thức mới, cần thiết phải phát triển năng lực tư duy, năng lực giải quyết vấn

đề, năng lực sáng tạo Các năng lực này có thể quy gọn là “năng lực giải quyết vấn đề”

Hội nghị giữa Hội đồng giáo dục Australia và các Bộ trưởng Bộ Giáo dục - Đào tạo - Việc làm các bang của Australia (9/1992) đã đưa ra kiến nghị coi phát hiện và giải quyết vấn đề là một trong bảy năng lực then chốt (Key competencies)

Ở Việt Nam, đổi mới căn bản và toàn diện giáo dục, đào tạo, phát triển nguồn nhân lực, đã từng được khẳng định trong các văn kiện của Đảng trước đây, đặc biệt là trong Nghị quyết số 29 của Hội nghị Trung ương 8, khoa XI, khẳng định đây không chỉ là quốc sách hàng đầu, là “chìa khóa” mở ra con đường đưa đất nước đi lên, mà còn là “mệnh lệnh” của cuộc sống Cần phải

có “Cuộc cách mạng” về phương pháp giáo dục hướng vào người học, rèn luyện và phát triển khả năng suy nghĩ, khả năng giải quyết vấn đề một cách

Trang 10

về mục tiêu và phương pháp bồi dưỡng con người Việt Nam trong điều kiện

mới, Bộ Giáo dục đã chỉ ra: “Giáo dục không chỉ đào tạo con người có năng

lực tuân thủ, mà chủ yếu là những con người có năng lực sáng tạo, , biết cách đặt vấn đề, nghiên cứu và giải quyết vấn đề ” Các dự án phát triển

Giáo dục tiểu học, Trung học cơ sở và Trung học phổ thông ở nước ta hiện nay đang thực hiện đổi mới Giáo dục theo định hướng trên

Và nhận thức được vai trò và ý nghĩa vô cùng quan trọng của các chương trình đánh giá quốc tế trong việc hoạch định các chiến lược và chính sách phát triển giáo dục quốc gia nên Việt Nam đã quyết định tham gia vào một trong những chương trình đánh giá quốc tế có uy tín và phổ biến nhất

hiện nay đó là PISA (viết tắt của cụm từ tiếng Anh “Programme for

International Student Assessment”, được dịch là “Chương trình đánh giá HS quốc tế” do Tổ chức Hợp tác và Phát triển Kinh tế (“Organization for Economic Co-operation and Development”, thường được viết tắt là OECD)

khởi xướng và triển khai Chương trình sẽ được triển khai ở 9 tỉnh, thành phố của nước ta: Tây Ninh, Bà Rịa - Vũng Tàu, Hồ Chí Minh, Gia Lai, Kon Tum, Ninh Bình, Thái Bình, Hưng Yên, Nam Định vào năm 2012 Từ đó nền giáo dục Việt Nam được tiếp cận với nội dung chương trình quốc tế đánh giá trình

độ học sinh đồng thời cho phép so sánh việc học tập và môi trường học tập của học sinh Việt Nam với các nước trên thế giới Tuy nhiên, đó cũng là thách thức lớn với giáo dục Việt Nam bởi nhiều lí do như: ở Việt Nam chưa có nhiều chuyên gia chuyên nghiệp, giáo viên và học sinh chưa nhiều người tìm hiểu, làm quen và tiếp cận các dạng đề thi của PISA, tài liệu tham khảo có rất

ít chủ yếu là tiếng Anh…

Trang 11

3

Một đặc điểm nổi bật trong đánh giá của PISA là nội dung đánh giá được xác định dựa trên các kiến thức, kĩ năng cần thiết cho tương lai, không dựa vào các chương trình giáo dục quốc gia Đây chính là điều mà PISA gọi là

“năng lực phổ thông” Một trong các năng lực được đánh giá trong PISA là năng lực toán học phổ thông Trong PISA, các tình huống được đưa ra để đánh giá năng lực này có liên quan mật thiết đến những vấn đề trong cuộc sống của cá nhân hàng ngày, những vấn đề của cộng đồng và toàn cầu

Ở trường phổ thông, có thể xem học Toán là học phát hiện và giải quyết các vấn đề Toán học (tìm tòi ở mức độ học tập các tri thức Toán học theo con đường tìm tòi suy lí và khái quát hóa) và dạy Toán là dạy hoạt động Toán học Hơn nữa, môn Toán là môn học có tính khái quát cao, mang đặc thù riêng của khoa học Toán học nên chứa đựng nhiều tiềm năng để bồi dưỡng năng lực giải quyết vấn đề

Mặt khác trong dạy học Toán, mà cụ thể là: dạy học khái niệm, dạy học định lí, và dạy học giải bài tập Toán, mỗi cái có một vai trò quan trọng riêng, một ý nghĩa nhất định trong việc góp phần phát triển năng lực giải quyết vấn

đề, phát triển trí tuệ cho học sinh

Toán Tổ hợp – Xác suất là một ngành toán học có nhiều ứng dụng rộng rãi trong nhiều lĩnh vực khoa học, kinh tế, đời sống Vì vậy lý thuyết Tổ hợp – Xác suất được đưa vào chương trình toán lớp 11 nhằm cung cấp cho học sinh trung học phổ thông những kiến thức cơ bản về ngành toán học quan trọng này Những bài toán về Tổ hợp – Xác suất có nội dung gắn liền với cuộc sống, có ở nhiều môn khoa học khác nhau, ở đó ta rất dễ tạo vấn đề và nêu vấn đề để phát triển cho học sinh năng lực phát hiện và giải quyết vấn đề khi học sinh làm những bài tập này

Chính vì vậy, việc sưu tầm, xây dựng những bài toán phần Tổ hợp – Xác suất theo dạng PISA là một sự kết hợp tuyệt vời vừa giúp phát triển năng lực phát hiện và giải quyết vấn đề cho học sinh vừa giúp kiểm tra, đánh giá về năng lực phát hiện – giải quyết vấn đề cho học sinh Nhưng theo sự tìm hiểu của em,

Trang 12

4

chưa có nhiều công trình nghiên cứu về đề tài này nên em chọn đề tài “Xây dựng

bộ câu hỏi dạng PISA định hướng phát triển năng lực phát hiện và giải quyết vấn

đề cho học sinh phần Tổ hợp - Xác suất” làm đề tài nghiên cứu

2 Mục đích nghiên cứu

Thiết kế, biên soạn, sưu tầm được bộ câu hỏi dạng PISA phần Tổ hợp – Xác suất giúp học sinh phát triển được năng lực phát hiện và giải quyết vấn đề

3 Nhiệm vụ nghiên cứu

- Tìm hiểu về năng lực, năng lực toán học, năng lực phát hiện và giải quyết vấn đề trong Toán học

- Nguyên tắc và biện pháp xây dựng bộ câu hỏi dạng PISA phần Tổ hợp – Xác suất định hướng phát triển năng lực phát hiện và giải quyết vấn đề cho học sinh

- Tiến hành thử nghiệm sư phạm để bước đầu kiểm nghiệm tính khả thi

và tính hiệu quả của những biện pháp đề xuất trong luận văn

4 Phạm vi nghiên cứu

- Nội dung sách giáo khoa đại số và giải tích lớp 11, sách giáo viên đại

số và giải tích lớp 11

5 Mẫu khảo sát, địa bàn khảo sát

Phần Tổ hợp – Xác suất trong đại số và giải tích 11, các bài toán PISA, các bài giảng với các bài toán theo cách tiếp cận PISA; học sinh khối 11, giáo viên trường Trung học phổ thông Phù Cừ, huyện Phù Cừ, tỉnh Hưng Yên

6 Giả thuyết khoa học

Học sinh làm các câu hỏi dạng PISA phần Tổ hợp – Xác suất có thể góp phần phát triển năng lực phát hiện và giải quyết vấn đề cho học sinh trong dạy học Toán ở trường Trung học phổ thông

7 Phương pháp nghiên cứu

- Phương pháp nghiên cứu lý luận: nghiên cứu và phân tích tài liệu về lí

luận dạy học, sách giáo khoa, sách giáo viên, các tài liệu liên quan đến môn

Trang 13

5

học Nghiên cứu các tài liệu liên quan đến chương trình PISA, các luận văn có nội dung phù hợp với hướng nghiên cứu của đề tài

- Phương pháp điều tra: Tìm hiểu thực tiễn giảng dạy tại cơ sở giáo dục

- Phương pháp thực nghiệm sư phạm: Tổ chức dạy học thực nghiệm tại

trường Trung học phổ thông Phù Cừ; cung cấp bài tập và kiểm tra kết quả sau thực nghiệm

8 Những đóng góp của Luận văn

ở Việt Nam, đáp ứng yêu cầu năng lực toán học phổ thông của người lao động trong thời đại mới

9 Cấu trúc luận văn

Ngoài phần mở đầu, phần kết luận và danh mục tài liệu tham khảo, luận văn được chia làm 3 chương :

Chương 1: Cơ sở lý luận và thực tiễn

Chương 2: Xây dựng bộ câu hỏi dạng PISA định hướng phát triển năng

lực phát hiện và giải quyết vấn đề cho học sinh phần Tổ hợp – Xác suất

Chương 3: Thực nghiệm sư phạm

Trang 14

Có rất nhiều quan niệm về năng lực, từ đó dẫn đến nhiều cách tiếp cận

và nhiều hướng nghiên cứu khác biệt nhau

Trường phái di truyền học ở Phương Tây cuối thế kỷ XIX đầu thế kỷ XX đưa ra quan điểm: năng lực phụ thuộc tuyệt đối vào tính bẩm sinh di truyền của gen và không phụ thuộc vào điều kiện xã hội cũng như các hoạt động hàng ngày của con người Còn theo phái tâm lí học hành vi thì năng lực của con người là sự thích nghi về mặt sinh vật đối với môi trường sống Một số người theo quan điểm xã hội học thì lại cho rằng năng lực được quyết định bởi môi trường xã hội Các cách tiếp cận và nghiên cứu theo những hướng trên bước đầu đã cho chúng ta những kết quả đáng ghi nhận Tuy nhiên, hạn chế lớn nhất là họ cho rằng năng lực là một lượng bất biến, khó có thể thay đổi được theo sự phát triển về mặt sinh học của con người và ít phụ thuộc vào môi trường xã hội

Sau này, các nhà tâm lý học Marx và Soviet khi nghiên về năng lực đã khẳng định rằng năng lực là tổng hòa của hai yếu tố: yếu tố đặc điểm tâm lý của cá nhân và yếu tố kết quả của một hoạt động nào đó Theo Karl Marx:

“Sự khách nhau giữa năng lực của cá nhân thể hiện qua sự phân công lao

động và kết quả lao động” Còn theo Angel thì “Lao động sáng tạo ra con người” [1, tr 641]

Theo nhà tâm lí học Nga V.A.Kruchetxki thì: “Năng lực được hiểu như

là: Một phức hợp các đặc điểm tâm lí cá nhân của con người đáp ứng những yêu cầu của một hoạt động nào đó và là điều kiện để thực hiện thành công hoạt động đó”, [10, tr 14]

Trang 15

7

Như vậy năng lực không những phụ thuộc vào yếu tố bẩm sinh, bản năng mà năng lực còn hình thành và phát triển, hoàn thiện khi con người tham gia các hoạt động xã hội Và năng lực là một lượng có thể biến đổi được thông qua các hoạt động

Vậy có thể thấy, năng lực là điều kiện cho hoạt động có ích của con người, năng lực là toàn bộ những thuộc tính tâm lý mà con người thích hợp với một hoạt động có ích lợi xã hội nhất định [17, tr 12]

Trong các công trình nghiên cứu về năng lực của nước ta đều nhấn mạnh đến tính có ích của hoạt động: Theo từ điển Tiếng Việt, năng lực là khả năng, điều kiện chủ quan có sẵn để thực hiện một hoạt động nào đó [17, tr 23]; Năng lực là tổ hợp các đặc điểm tâm lý của một con người Tổ hợp này vận hành theo một mục đích nhất định và tạo ra kết quả của một hoạt động nào đấy [8, tr 145]; Năng lực là khả năng thực hiện có tách nhiệm và hiệu quả các hành động, giải quyết các nhiệm vụ, các vấn đề trong những tình huống khác nhau thuộc lĩnh vực nghề nghiệp, xã hội hay cá nhân trên cơ sở hiểu biết, kỹ năng, kỹ xảo và kinh nghiệm cũng như sự sẵn sàng hành động [6, tr 38]

Theo Nguyễn Văn Cường [6, tr 44]: “Năng lực là khả năng thực hiện có

trách nhiệm và hiệu quả các hành động, giải quyết các nhiệm vụ, vấn đề trong những tình huống khác nhau thuộc các lĩnh vực nghề nghiệp, xã hội hay cá nhân trên cơ sở hiểu biết, kỹ năng, kỹ xảo và kinh nghiệm cũng như sự sẵn sàng hành động.”

Tóm lại, qua tìm hiểu nhiều nghiên cứu tôi cho rằng: Năng lực là tổ hợp các đặc điểm tâm sinh lý của một con người được vận hành vào một hoạt động nào đó nhằm đảm bảo hoạt động đó đạt kết quả tốt

1.1.1.2 Năng lực Toán học (Mathematical competence)

Theo nhiều tác giả, trong đó có Nguyễn Hữu Châu: Năng lực Toán: “Là

khả năng nhận biết ý nghĩa, vai trò của kiến thức toán học trong cuộc sống; khả năng vận dụng tư duy toán học để giải quyết các vấn đề của thực tiễn đáp ứng nhu cầu đời sống hiện tại và tương lai một cách linh hoạt; khả năng phân

Trang 16

8

tích, suy luận, lập luận khái quát hoá, trao đổi thông tin một cách hiệu quả thông qua việc đặt ra, hình thành và giải quyết vấn đề toán học trong các tình huống, hoàn cảnh khác nhau…”, [5, tr 21]

Với PISA, năng lực toán học được định nghĩa như sau: “Năng lực toán

học là khả năng của cá nhân biết lập công thức (formulate), vận dụng (employ) và giải thích (explain) toán học trong nhiều ngữ cảnh Nó bao gồm suy luận toán học và sử dụng các khái niệm, phương pháp, sự việc và công cụ

để mô tả, giải thích và dự đoán các hiện tượng Nó giúp cho con người nhận

ra vai trò của toán học trên thế giới và đưa ra phán đoán và quyết định của công dân biết góp ý, tham gia và suy ngẫm”, [3, tr 6]

Như vậy, năng lực Toán học là những đặc điểm tâm lý của người học trong hoạt động Toán học Khả năng nhận biết vai trò, ý nghĩa của Toán học trong lý luận và đời sống giúp người học hiểu rõ các khái niệm, các định lý và mối quan hệ giữa chúng, tạo động cơ và hứng thú học tập đồng thời cũng làm người học nhận thức nhiệm vụ học tập môn Toán Khả năng vận dụng các kiến thức Toán học giúp người học hình thành các kỹ năng, kỹ xảo Khả năng phân tích, suy luận, lập luận, trao đổi thông tin giúp người học hình thành và phát triển tư duy để giải quyết các tình huống trong cả Toán học lẫn thực tế đời sống

Về cấu trúc của năng lực toán học:

Nếu A V Krutexki nhìn nhận năng lực Toán học dưới góc độ thu thập và

xử lý thông tin nên đã phân chia năng lực Toán học bao gồm 4 thành phần sau: a) Về mặt thu nhận thông tin Toán học

b) Về mặt chế biến thông tin Toán học

c) Về mặt lưu trữ các thông tin Toán học

d) Về thành phần tổng hợp chung hay khuynh hướng Toán học của trí tuệ Thì cụ thể hơn, Nguyễn Hữu Châu đã chỉ ra năng lực Toán học được cấu tạo bởi những năng lực thành phần theo sơ đồ dưới đây:

Trang 17

9

Sơ đồ 1.1: Cấu trúc của năng lực Toán học:

Mỗi tổ hợp các năng lực thành phần này cấu tạo nên năng lực Toán học của mỗi cá nhân Và các năng lực thành phần trên không tách rời nhau, có mối liên hệ mật thiết, hỗ trợ, bổ sung cho nhau tạo thành một thể thống nhất

Về các yếu tố ảnh hưởng đến sự hình thành và phát triển năng lực toán: Yếu tố tự nhiên – sinh học: Năng lực toán của học sinh được di truyền từ cha mẹ, mà chúng ta hay gọi là năng khiếu toán Thực tế có nhiều học sinh được thừa hưởng những thuộc tính sinh học (gen), những phẩm chất toán học

từ cha mẹ là những người có năng lực toán học tốt Di truyền tạo ra những điều kiện ban đầu để học sinh có triển vọng phát triển năng lực toán tốt Tuy nhiên, điều đó chỉ tạo nên những tiền đề vật chất cho sự hình thành và phát triển năng lực toán sau này

Yếu tố môi trường xã hội và giáo dục: Mỗi học sinh đều sống (hoạt động) trong một môi trường xã hội nhất định Môi trường góp phần tạo nên động cơ, mục đích, phương tiện, hành động của cá nhân, trong đó giáo dục đóng vai trò chủ đạo Chính vì thế, trên thế giới có những nước toán học rất

Lập luận

Diễn đạt

Mô hình hóa

Sử dụng ký hiệu, ngôn ngữ,

phép toán Biểu diễn

NĂNG LỰC TOÁN HỌC

Sử dụng phương

tiện hỗ trợ

Tư duy và suy luận

Đặt và giải quyết vấn đề

Trang 18

10

phát triển, là mỗi trường ươm mầm cho những tài năng toán học xuất chúng Hay trong một quốc gia, có những địa phương có phong trào học toán vượt trội so với những nơi khác, mà người ta hay gọi là đất học toán

Yếu tố nội dung của toán học: Chính trong bản thân môn toán học với nội dung có đặc tính trừu tượng, logic đã góp phần hình thành và phát triển các năng lực toán học cho học sinh Việc học tập toán một cách có hệ thống, phương pháp phù hợp là điều kiện quan trọng để học sinh phát triển năng lực toán một cách bền vững

Yếu tố hoạt động của học sinh: Hoạt động của học sinh đóng vai trò quyết định trực tiếp đến sự hình thành và phát triển năng lực toán Muốn hình thành và phát triển năng lực toán, học sinh cần phải được trực tiếp thao tác, hoạt động với các đối tượng, nội dung toán học một cách tích cực, say mê, cộng với ý chí, nghị lực và sự kiên trì để vượt qua các trở ngại, dần dần chiếm lĩnh các tri thức toán học Trong quá trình hoạt động đó, tùy vào sự nỗ lực của bản thân mà năng lực toán học sẽ được hình thành và phát triển ở các mức độ khác nhau ở mỗi học sinh Điều đó khẳng định, năng lực, tài năng của mỗi con người chỉ có thể được hình thành “trong hoạt động, thông qua hoạt động

và bằng hoạt động” của mỗi cá nhân

1.1.1.3 Năng lực Phát hiện và giải quyết vấn đề

Năng lực Phát hiện và giải quyết vấn đề là khả năng của một cá nhân hiểu và giải quyết tình huống vấn đề khi mà giải pháp giải quyết chưa rõ ràng

Nó bao gồm sự sẵn sàng tham gia vào tình huống giải quyết vấn đề đó – thể hiện tiềm năng là công dân tích cực và xây dựng [4, tr 3]

Phát hiện và giải quyết vấn đề là hoạt động trí tuệ được coi là trình độ phức tạp và cao nhất về nhận thức, vì khi đó cần huy động tất cả các năng lực trí tuệ của cá nhân Để phát hiện ra và giải quyết được vấn đề, chủ thể phải huy động trí nhớ, tri giác, lý luận, khái niệm hóa, ngôn ngữ đồng thời sử dụng

cả cảm xúc, động cơ, niềm tin ở năng lực bản thân và khả năng kiểm soát được tình thế

Trang 19

11

Vậy ta có thể đề xuất định nghĩa về năng lực phát hiện và giải quyết vấn

đề nhƣ sau: “ Năng lực Phát hiện và giải quyết vấn đề là khả năng của một cá nhân huy động, kết hợp một cách linh hoạt và có tổ chức kiến thức, kỹ năng với thái độ, tình cảm, giá trị, động cơ cá nhân…để nắm đƣợc, hiểu và giải quyết vấn đề trong tình huống nhất định một cách có hiệu quả với tinh thần tích cực

Về cấu trúc của năng lực Phát hiện và giải quyết vấn đề: có thể thấy năng lực Phát hiện và giải quyết vấn đề có 4 thành tố, các tiêu chí của mỗi thành tố và mức độ của mỗi tiêu chí đƣợc thể hiện qua bảng sau:

Bảng 1.1: Các thành tố, tiêu chí và mức độ của năng lực Phát hiện và giải

quyết vấn đề Thành

tố năng lực

Biểu hiện (tiêu chí)

- Phát hiện đƣợc tình huống có vấn đề

- Nêu đƣợc tình huống có vấn đề

- Phân tích đƣợc tình huống cụ thể

- Biết tự phát hiện ra vấn đề

- Đặt vấn đề

- Phát biểu đƣợc vấn đề

đƣợc tình huống cụ thể

- Biết tự phát hiện ra vấn đề

- Đặt vấn đề

- Phát biểu vấn đề chƣa đầy đủ

đƣợc tình huống cụ thể

- Biết tự phát hiện ra vấn đề

- Chƣa biết đặt vấn đề

- Chƣa phát biểu đƣợc vấn

đề Thiết lập

không gian

vấn đề

- Thu thập thông tin

- Phân tích thông tin

- Tìm ra kiến thức liên quan

- Xác định đƣợc các thông tin

- Biết tìm hiểu các thông tin có liên quan đến vấn đề ở SGK, tài liệu tham khảo và thông

- Xác định đƣợc các thông tin

- Biết tìm hiểu các thông tin có liên quan đến vấn đề ở

- Xác định đƣợc các thông tin

- Biết tìm hiểu các thông tin có liên quan đến vấn đề nhƣng

Trang 20

12

qua thảo luận SGK, tài liệu

tham khảo và thảo luận

ở mức kinh nghiệm bản thân

Lập kế hoạch

thực hiện giải

pháp

- Đề xuất giả thiết

- Lập kế hoạch

để giải quyết vấn đề

- Thực hiện kế hoạch giải quyết vấn đề

- Đề xuất đƣợc giải pháp giải quyết vấn đề

- Lập đƣợc kế hoạch để giải quyết vấn đề

- Thực hiện kế hoạch giải quyết vấn đề độc lập, sáng tạo, hợp lý

- Đề xuất đƣợc giải pháp giải quyết vấn đề nhƣng chƣa sáng tạo

- Lập đƣợc kế hoạch để giải quyết vấn đề

- Thực hiện

kế hoạch giải quyết vấn đề độc lập nhƣng chƣa sáng tạo

- Đề xuất đƣợc giải pháp giải quyết vấn đề nhƣng chƣa hợp lý

- Chƣa lập

hoạch để giải quyết vấn đề

- Chƣa thực hiện kế hoạch giải quyết vấn

- Suy ngẫm về cách thức và tiến trình giải quyết vấn đề

- Điều chỉnh và vận dụng trong tình huống mới

- Thực hiện đƣợc kế hoạch giải quyết vấn

đề độc lập, sáng tạo hoặc hợp lý

- Nhận ra đƣợc

sự phù hợp hay không phù hợp của giải pháp

- Vận dụng đƣợc trong tình huống mới

- Thực hiện đƣợc giải pháp nhƣng chƣa đánh giá đƣợc giải pháp

- Chƣa vận dụng trong tình huống mới

- Chƣa thực hiện đƣợc giải pháp giải quyết vấn đề

Trang 21

13

Về các biểu hiện của năng lực Phát hiện và giải quyết vấn đề bao gồm:

- Biết phát hiện một vấn đề, tìm hiểu một vấn đệ

- Thu thập và làm rõ các thông tin liên quan đến vấn đề

- Đề xuát được các giả thuyết khoa học khác nhau; lập được kế hoạch để giải quyết vấn đệ

- Thực hiện và đánh giá giải pháp giải quyết vấn đề; suy ngẫm về cách thức và tiến trình giải quyết vấn đề để điều chỉnh và vận dụng trong tình huống mới

1.1.1.4 Năng lực Phát hiện và giải quyết vấn đề trong Toán học

Nguyễn Hữu Châu và nhiều tác giả khác cho rằng “Năng lực Toán học là

khả năng nhận biết ý nghĩa, vai trò của kiến thức Toán trong cuộc sống; khả năng vận dụng tư duy Toán học để giải quyết các vấn đề của thực tiễn đáp ứng nhu cầu đời sống hiện tại và tương lai một cách linh hoạt; khả năng phân tích, suy luận, lập luận, khái quát hóa, tổng quát hóa, trao đổi thông tin một cách hiệu quả thông qua việc đặt ra, hình thành và giải quyết vấn đề Toán”, [5, tr.25]

Năng lực Phát hiện và giải quyết vấn đề là một bộ phận của năng lực Toán học, nó không tồn tại độc lập trong cấu trúc năng lực Toán học mà có mối liên

hệ mật thiết với các năng lực thành phần khác Lập luận, diễn đạt, mô hình hóa,

sử dụng ngôn ngữ, ký hiệu, phép toán hay sử dụng các phương tiện, là một tổ hợp các đặc điểm tâm lý thể hiện ở việc sử dụng tri thức, kỹ năng, kinh nghiệm,

tư duy và các hoạt động khác nhằm giải quyết mâu thuẫn nhận thức

Từ những nghiên cứu về năng lực phát hiện và gải quyết vấn đề, vận dụng vào thực tiễn dạy học Toán ở trường Trung học phổ thông, chúng tôi quan niệm rằng: Năng lực phát hiện và giải quyết vấn đề trong Toán học là một tổ hợp các năng lực thể hiện ở các kỹ năng (tư duy và hành động) trong hoạt động học tập nhằm giải quyết có hiệu quả nhiệm vụ của Toán học

Từ việc năng lực phát hiện và giải quyết vấn đề bao gồm hai hoạt động thành phần là hoạt động phát hiện vấn đề và hoạt động giải quyết vấn đề, trong học Toán học ta thấy rằng:

Trang 22

14

- Nhóm năng lực phát hiện vấn đề trong Toán học:

+ Năng lực phát hiện mâu thuẫn, tính có vấn đề trong tình huống: nhận

ra biểu tƣợng, dấu hiệu bản chất, tính chất chung, mối quan hệ về mặt Toán học của một loạt sự vật hiện tƣợng

- Nhóm năng lực giải quyết vấn đề trong toán học:

+ Năng lực sử dụng ngôn ngữ, ký hiệu Toán học

+ Năng lực tính toán, năng lực suy luận và chứng minh,

+ Năng lực hệ thống hóa vấn đề

+ Năng lực quy kết quả giải quyết vấn đề đúng tình huống, đúng giới hạn vấn đề

+ Năng lực sửa chữa sai lầm

+ Năng lực chuyển đổi ngôn ngữ bài toán giữa các bài toán đại số, lƣợng giác, giải tích và hình học để cho việc giải quyết vấn đề đƣợc đa dạng, thuận lợi hơn

1.1.2 Dạy học phát hiện và giải quyết vấn đề

1.1.2.1 Cơ sở của phương pháp dạy học phát hiện và giải quyết vấn đề

Cơ sở Triết học:

Theo Triết học duy vật biện chứng, trong tự nhiên và xã hội thì mọi sự vật hiện tƣợng đều chứa đựng những mâu thuẫn bên trong Việc phát hiện và giải quyết các mâu thuẫn đó là động lực thúc đẩy quá trình vận động và phát triển của sự vật, hiện tƣợng Việc giải quyết các mâu thuẫn là nguồn gốc của mọi sự vận động và phát triển tƣ duy của quá trình nhận thức

Trang 23

15

Nhiệm vụ trung tâm trong dạy học Phát hiện và giải quyết vấn đề là tạo

ra tình huống có vấn đề (mâu thuẫn nhận thức), phát triển thành vấn đề và giải quyết vấn đề Vấn đề đặt ra cho học sinh trong quá trình học tập chính là mâu thuẫn giữa yêu cầu của nhiệm vụ nhận thức với kinh nghiệm có sẵn

Như vậy, cơ sở Triết học của dạy học Phát hiện và giải quyết vấn đề là: Chuyển phương pháp biện chứng để giải quyết mâu thuẫn nói chung thành phương pháp sư phạm và sau đó giải quyết mâu thuẫn trong quá trình tiếp thu kiến thức mới

Cơ sở Tâm lý học và Giáo dục học:

Theo Tâm lý học: “các quy luật của tư duy và các quy luật của quá trình

tiếp thu kiến thức ở mức độ đáng kể là trùng nhau Do đó, những quy luật tâm

lý của tư duy cũng quyết định quá trình tiếp thu kiến thức”, [8, tr 14] Mặt

khác, theo các nhà tâm lý học, “con người chỉ bắt đầu tư duy tích cực khi bắt

đầu nảy sinh nhu cầu tư duy, tức là khi đứng trước một khó khăn về nhận thức cần khắc phục, một tình huống có vấn đề”, [8, tr 15]

Theo Giáo dục học, dạy học Phát hiện và giải quyết vấn đề đặt học sinh vào vị trí “nhà nghiên cứu”, chính sự lôi cuốn của “vấn đề học tập, nghiên cứu” đã làm hoạt động hóa nhận thức của học sinh, rèn luyện ý chí và khả năng hoạt động cho học sinh

Như vậy, phương pháp dạy học Phát hiện và giải quyết vấn đề đã đáp ứng được nguyên tắc tự giác và tích cực trong dạy học, đồng thời cũng thể hiện sự thống nhất giữa giáo dục và giáo dưỡng nghĩa là kết hợp giữa truyền thụ kiến thức và rèn luyện phẩm chất đạo đức cho học sinh

1.1.2.2 Khái niệm, bản chất phương pháp dạy học phát hiện và giải quyết

vấn đề

Dạy học Phát hiện và giải quyết vấn đề là một cách thức dạy học nhằm phát triển năng lực, tư duy sáng tạo, năng lực giải quyết vấn đề của học sinh Học sinh được đặt trong tình huống có vấn đề, thông qua việc giải quyết vấn đề giúp học sinh lĩnh hội tri thức, kiến thức, kỹ năng và phương pháp nhận thức

Trang 24

16

Dạy học phát hiện và giải quyết vấn đề có những bản chất cơ bản sau đây:

- Giáo viên đặt học sinh trước một loạt các bài toán nhận thức có chứa đựng mâu thuẫn giữa cái đã biết và cái phải tìm (vấn đề khoa học) Đây không phải là những vấn đề rời rạc mà là một hệ thống có quan hệ logic với nhau và được cấu trúc lại một cách sư phạm gọi là bài toán nêu vấn đề

- Học sinh tiếp nhận mâu thuẫn của bài toán nêu vấn đề như mâu thuẫn của nội tâm mình và được đặt vào tình huống có vấn đề, tức là trạng thái có nhu cầu bên trong bức thiết muốn giải quyết bằng được bài toán đó

- Trong quá trình giải và bằng quá trình giải, bài toán nhận thức (giải quyết vấn đề) mà học sinh được lĩnh hội một cách tự giác và tích cực cả kiến thức và

cả cách giải do đó có được niềm vui sướng của sự phát minh, sáng tạo

1.1.3 PISA

Theo Tài liệu tập huấn PISA 2015 của Bộ Giáo dục và Đào tạo: ’’PISA

là chương trình đánh giá học sinh quốc tế (The Programme for International Student Assessment) - PISA được xây dựng và điều phối bởi tổ chức hợp tác và phát triển kinh tế (OECD) vào cuối thập niên 90 và hiện vẫn diễn ra đều đặn Khảo sát PISA được thiết kế nhằm đưa ra đánh giá có chất lượng và đáng tin cậy về hiệu quả của hệ thống giáo dục (chủ yếu là đánh giá năng lực của học sinh trong các lĩnh vực như Đọc hiểu, Toán học và Khoa học) với đối tượng là học sinh ở độ tuổi 15, tuổi sắp kết thúc chương trình giáo dục bắt buộc ở hầu hết các nước thành viên OECD PISA cũng hướng đến thu thập thông tin cơ bản về ngữ cảnh dẫn đến những hệ quả giáo dục trên Càng ngày PISA càng thu hút được sự quan tâm và tham gia của nhiều nước trên thế giới Do đó, PISA không chỉ đơn thuần là một chương trình nghiên cứu đánh giá chất lượng giáo dục của OECD mà trở thành xu hướng đánh giá quốc tế, tư tưởng đánh giá của PISA trở thành tư tưởng đánh giá học sinh trên toàn thế giới Các nước muốn biết chất lượng giáo dục của quốc gia mình như thế nào, đứng ở đâu trên thế giới này đều phải đăng ký tham gia PISA’’, [3, tr 6]

Trang 25

17

Và như ta đã được biết thì PISA được tiến hành dưới sự phối hợp quản lí của các nước thành viên OECD, cùng với đó là sự hợp tác ngày càng nhiều của các nước không thuộc OECD, được gọi là “các nước đối tác” Tổ chức OECD giám sát chương trình thông qua ban điều hành PISA (PGB) và quản lí chương trình thông qua cơ quan thư kí đặt trụ sở tại Pari

PISA không kiểm tra kiến thức thu được tại trường học mà đưa ra cái nhìn tổng quan về khả năng phổ thông thực tế của học sinh Bài thi chú trọng khả năng học sinh vận dụng kiến thức và kĩ năng của mình khi đối mặt với nhiều tình huống và những thử thách liên quan đến các kĩ năng đó Nói cách khác, PISA đánh giá khả năng học sinh vận dụng kiến thức và kĩ năng đọc để hiểu nhiều tài liệu khác nhau mà họ có khả năng sẽ gặp trong cuộc sống hàng ngày; khả năng vận dụng kiến thức Toán học vào các tình huống liên quan đến toán học; khả năng vận dụng kiến thức khoa học để hiểu và giải quyết các tình huống khoa học Cấu trúc bài thi PISA được thiết kế theo khung đánh giá của OECD, xác định rõ phạm vi kiến thức, các kĩ năng liên quan đến từng lĩnh vực và đưa ra những câu hỏi mẫu để hướng dẫn các nước xây dựng câu hỏi đóng góp cho OECD

Khảo sát PISA đánh giá học sinh ở độ tuổi 15 (15 năm 3 tháng đến 16 năm 2 tháng) Đây là một cuộc khảo sát theo độ tuổi chứ không phải theo cấp bậc lớp học Mục đích của cuộc khảo sát là nhằm đánh giá xem học sinh đã được chuẩn bị để đối mặt với những thách thức của cuộc sống xã hội hiện đại

ở mức độ nào trước khi bước vào cuộc sống

1.1.4 Một vài nét chính về nội dung của Toán học trong PISA

1.1.4.1 Lĩnh vực Toán học của PISA

Sự hiểu biết về toán học là trung tâm của sự sẵn sàng của một người trẻ tuổi dành cho cuộc sống ở xã hội hiện đại Tỷ lệ các vấn đề và tình huống gặp phải trong cuộc sống hàng ngày đang gia tăng, kể cả trong ngữ cảnh chuyên môn, yêu cầu có độ hiểu biết về toán học, suy luận toán học và các công cụ toán học, trước khi có thể hiểu rõ và giải quyết các vấn đề này Toán học là

Trang 26

18

một công cụ quan trọng cho người trẻ khi họ đương đầu với các vấn đề và thách thức trong khía cạnh cá nhân, nghề nghiệp, xã hội, khoa học trong cuộc sống Đánh giá ở tuổi 15 cung cấp sự biểu lộ sớm về việc các cá nhân có thể đáp ứng như thế nào với các tình huống đa dạng có liên quan đến toán học mà các em sẽ gặp phải trong cuộc sống sau này

Là cơ sở của đánh giá quốc tế học sinh tuổi 15, câu hỏi đưa ra là: “Điều

gì quan trọng mà công dân cần biết và có thể làm trong các tình huống liên quan đến toán học?" Cụ thể hơn, khả năng toán học có ý nghĩa như thế nào đối với một người tuổi 15, đang học hoặc chuẩn bị theo đuổi ngành đào tạo chuyên sâu trong sự nghiệp hoặc nhập học đại học? Điều quan trọng là cấu trúc năng lực toán học, được sử dụng trong báo cáo này là thể hiện khả năng

cá nhân về lập công thức (formulate), vận dụng (employ) và giải thích (interpret) toán học ở nhiều ngữ cảnh, chứ không phải là ở mức thấp hoặc tối thiểu về kiến thức và kỹ năng Thay vào đó là mô tả (describe), giải thích (explain) và dự đoán (predict) các hiện tượng Quan niệm về năng lực toán học này hỗ trợ cho tầm quan trọng trong việc phát triển sự hiểu biết thấu đáo của học sinh về các khái niệm toán học thuần túy và lợi ích của các em khi được tham gia vào cuộc thám hiểm trong thế giới trừu tượng của toán học Cấu trúc về năng lực toán học, theo định nghĩa PISA, đặc biệt nhấn mạnh sự cần thiết phải phát triển năng lực của học sinh trong việc sử dụng toán học theo ngữ cảnh, và điều quan trọng là các em có trải nghiệm toán học phong phú trên lớp để thực hiện công việc này Điều này là đúng đối với học sinh tuổi 15, vốn là đối tượng gần với chương trình đào tạo chính thức cuối cùng về toán học, cũng như đối với đối tượng sẽ tiếp tục nghiên cứu toán học chính thức Ngoài ra, có thể suy luận rằng đối với hầu hết học sinh, động lực học toán tăng lên khi các em nhìn thấy mối liên quan giữa nội dung đang học với thế giới bên ngoài lớp học và với các môn khác

Năng lực toán học tự nhiên sẽ vượt qua ranh giới độ tuổi Tuy nhiên, đánh giá học sinh tuổi 15 phải tính đến những đặc điểm liên quan tới đối tượng học

Trang 27

19

sinh này; vì vậy, cần xác định nội dung, ngôn ngữ và ngữ cảnh phù hợp với lứa tuổi Khung này phân biệt giữa các loại nội dung bao quát, quan trọng đối với năng lực toán học của từng cá nhân nói chung và các chủ đề nội dung cụ thể phù hợp với học sinh tuổi Năng lực toán học không phải là tính chất mà cá nhân có hoặc không có, mà đó là tính chất ở một miền liên tục, với một số cá nhân có năng lực toán học tốt hơn so với những người khác - và luôn có tiềm năng phát triển

Với PISA, năng lực toán học được định nghĩa: “Năng lực toán học là

khả năng của cá nhân biết lập công thức (formulate), vận dụng (employ) và giải thích (explain) toán học trong nhiều ngữ cảnh Nó bao gồm suy luận toán học và sử dụng các khái niệm, phương pháp, sự việc và công cụ để mô tả, giải thích và dự đoán các hiện tượng Nó giúp cho con người nhận ra vai trò của toán học trên thế giới và đưa ra phán đoán và quyết định của công dân biết góp ý, tham gia và suy ngẫm”, [3, tr 14 - 15]

1.1.4.2 Đánh giá năng lực Toán học phổ thông trong PISA

Năng lực phổ thông (literacy) là khái niệm quan trọng xác định nội dung đánh giá của PISA, xuất phát từ sự quan tâm tới những điều mà học sinh sau giai đoạn giáo dục cơ bản cần biết và có khả năng thực hiện được những điều cần thiết, chuẩn bị cho cuộc sống trong xã hội hiện đại

Năng lực Toán học phổ thông (Mathematical literacy) là khả năng nhận biết ý nghĩa, vai trò của kiến thức toán học trong cuộc sống; vận dụng và phát triển tư duy toán học để giải quyết các vấn đề của thực tiễn, đáp ứng nhu cầu đời sống hiện tại và tương lai một cách linh hoạt; là khả năng phân tích, suy luận, lập luận, khái quát hóa, trao đổi thông tin hiệu quả thông qua việc đặt ra, hình thành và giải quyết vấn đề toán học trong các tình huống, hoàn cảnh khác nhau, trong đó chú trọng quy trình, kiến thức và hoạt động

Năng lực Toán học phổ thông không đồng nhất với khả năng tiếp nhận nội dung của chương trình toán trong nhà trường phổ thông truyền thống, mà điều cần nhấn mạnh đó là kiến thức toán học được học, vận dụng và phát triển

Trang 28

20

như thế nào để tăng cường khả năng phân tích, suy luận, lập luận, khái quát hóa và phát hiện được những tri thức toán học ẩn dấu bên trong các tình huống, các sự kiện

1.1.4.3 Các cấp độ năng lực Toán học trong PISA

PISA đề cập đến 3 cấp độ năng lực Toán học phổ thông:

Bảng 1.2 Các cấp độ năng lực Toán học phổ thông trong PISA

Cấp độ 1

Nhớ lại các đối tượng, khái niệm và tính chất toán học

Thực hiện được một cách làm quen thuộc

Áp dụng được một thuật toán tiêu chuẩn

Trang 29

- Phương trình và bất đẳng thức (Equations and inequalities): phương trình và bất đẳng thức tuyến tính và có liên quan, phương trình căn bậc hai đơn, các phương pháp giải toán theo giải tích và không phân tích

- Hệ thống tọa độ (Co-ordinate systems): các phép biểu diễn và mô tả dữ liệu, vị trí và các mối quan hệ

- Những mối quan hệ bên trong và giữa các đối tượng hình học ở hai và

ba chiều (Relationships within and among geometrical objects in two and three dimensions): các mối quan hệ tĩnh như các tính liên thông đại số của số liệu (ví dụ: định lý Pitago dùng để xác định mối liên hệ giữa chiều dài các cạnh của tam giác vuông), vị trí tương đối, đồng dạng và đồng dư, các mối quan hệ động liên quan tới các phép biến đổi và chuyển động của đối tượng cũng như tính tương ứng giữa các đối tượng hai và ba chiều

- Phép đo (Measurement): định lượng về tính năng của và giữa các hình khối và đối tượng, như các phép đo góc, khoảng cách, độ dài, chu vi, chu vi, diện tích và khối lượng

- Số và các đơn vị (Numbers and units): các khái niệm, phép biểu diễn con số và các hệ thống con số, bao gồm những tính chất về số nguyên và hữu

tỉ, số vô tỉ, số lượng và các đơn vị đề cập tới những hiện tượng như thời gian, tiền bạc, trọng - lượng, nhiệt độ, khoảng cách, diện tích, khối lượng, nguồn gốc số lượng và mô tả bằng con số về chúng

Trang 30

- Thu thập dữ liệu, phép biểu diễn và diễn giải (Data collection, representation and interpretation): bản chất, nguồn gốc và tập hợp nhiều dạng

dữ liệu, nhiều cách khác nhau để biểu diễn và diễn giải chúng

- Dữ liệu biến thiên và mô tả về chúng (Data variability and its description): những khái niệm như biến thiên, phân phối và xu hướng tập trung các bộ dữ liệu, những cách mô tả và diễn giải chúng theo điều kiện định lượng

- Mẫu và chọn mẫu (Samples and sampling): những khái niệm về chọn mẫu và chọn mẫu từ những tập hợp dữ liệu, gồm có suy luận đơn giản dựa trên tính chất của mẫu

- Biến đổi và xác suất (Chance and probability): khái niệm về sự kiện ngẫu nhiên, biến thiên ngẫu nhiên và phép biểu diễn cho chúng, biến đổi và xác suất của các sự kiện, những khía cạnh cơ bản của khái niệm xác suất

Như đã biết, trong khoa học cũng như trong đời sống, chúng ta luôn phải xác định số phần tử của một tập hợp, phải tính toán khả năng của một biến

Trang 31

23

ngẫu nhiên là như thế nào Các kiến thức của Tổ hợp – Xác suất trong chương trình sách giáo khoa sẽ giúp ta giải quyết được một số bài toán như vậy trong khoa học và trong thực tiễn Chính vì vậy chủ đề Tổ hợp – Xác suất chiếm một vị trí quan trọng trong chương trình toán phổ thông

Về nội dung của chủ đề Tổ hợp – Xác suất trong chương trình toán học phổ thông Chương Tổ hợp – Xác suất ở sách Đại số và giải tích lớp 11 bao gồm hai phần: phần Tổ hợp và phần Xác suất

- Phần Tổ hợp (8 tiết)

+ Bài 1: Hai quy tắc đếm cơ bản (1 tiết)

+ Bài 2: Hoán vị, Chỉnh hợp và Tổ hợp (3 tiết)

Câu hỏi và bài tập ôn chương (2 tiết)

1.2.2 Tổng quan về thực trạng việc dạy học phần Tổ hợp – Xác suất ở trường phổ thông

Như ta đã biết, chủ đề Tổ hợp – Xác suất nằm trong chương 2 của sách giáo khoa Đại số và Giải tích nâng cao lớp 11 gồm hai phần, phần Tổ hợp và phần Xác suất So với sách giáo khoa chỉnh lí hợp nhất năm 2000, phần Tổ hợp được đưa vào chương cuối của sách lớp 12, từ năm 2007 phần Tổ hợp được đưa vào chương 2 của lớp 11 và thêm phần xác suất, ta thấy có những đặc điểm sau:

Trang 32

24

Thứ nhất là có tính sát thực, gần gũi với thực tiễn dạy học ở bậc trung học phổ thông hơn, nâng cao tính khả thi của chương trình và phù hợp với thực tế đời sống cũng như khoa học hiện đại

Thứ hai là trực quan, coi trực quan là phương pháp chủ đạo trong việc tiếp cận các khái niệm Toán học , dẫn dắt học sinh nhận thức từ trực quan sinh động đến tư duy trừu tượng thông qua các hoạt động hướng đích

Thứ ba là vừa sức, yêu cầu nhẹ nhàng với học sinh không quá hàn lâm,

vì vậy không gây căng thẳng cho học sinh trong quá trình học tập

Và cuối cùng là đổi mới, cách tân cả cách trình bầy, hình thức cũng như nội dung, nâng cao tính sư phạm bằng các hoạt động để học sinh định hướng được quá trình nhận thức tri thức cho mình

Về thực trạng dạy học chủ đề Tổ hợp – Xác suất Phân tích số liệu kết quả phiếu điều tra số 1 và số 2, ta có:

Bảng 1.3: Bảng thống kê phương pháp chủ yếu dạy học chủ đề Tổ hợp –

Xác suất Phương pháp giảng dạy Số giáo viên Tỉ lệ (%)

Trang 33

1.2.3 Tổng quan về việc tiếp cận các dạng đề thi của PISA ở trường phổ thông

Việt Nam bắt đầu tham gia PISA và triển khai trên 9 tỉnh, thành phố là Tây Ninh, Bà Rịa - Vũng Tàu, Hồ Chí Minh, Gia Lai, Kon Tum, Ninh Bình, Thái Bình, Hưng Yên, Nam Định vào năm 2012 Từ đó nền giáo dục Việt Nam được tiếp cận với nội dung chương trình quốc tế đánh giá trình độ HS đồng thời cho phép so sánh việc học tập và môi trường học tập của HS Việt Nam với các nước trên thế giới Tuy nhiên, đó cũng là thách thức lớn với giáo dục Việt Nam bởi nhiều lí do như: ở Việt Nam chưa có nhiều chuyên gia chuyên nghiệp, GV và HS chưa nhiều người tìm hiểu, làm quen và tiếp cận các dạng đề thi của PISA, tài liệu tham khảo có rất ít chủ yếu là tiếng Anh…Mặc dù vậy lần đầu tiên kết quả lần đầu tiên học sinh Việt Nam tham gia chương trình đánh giá PISA (2012) đã xếp hạng thứ 8 về Khoa học, thứ

17 về môn Toán và thứ 19 về môn Đọc hiểu trong số 65 quốc gia, vùng lãnh thổ Kết quả này gây bất ngờ cho cả thế giới

Bộ Giáo dục và Đào tạo đã tổ chức rất nhiều các đợt tập huấn vận dụng cách đánh giá PISA vào trường phổ thông tại các tỉnh, thành phố từ đó việc tiếp cận các dạng đề thi của PISA ở trường phổ thông đã được quan tâm và triển khai Đã có rất nhiều giáo viên tại các trường phổ thông vận dụng ra đề kiểm tra theo hướng tiếp cận PISA trong các kỳ thi Ví dụ như sau:

Trang 34

26

Bảng 1.5: Bảng thống kê mức độ quan tâm đến ra đề thi tiếp cận dạng đề

thi PISA của giáo viên

Kết luận Chương 1

Trong chương 1, luận văn đã nêu được quan điểm của một số nhà nghiên cứu về năng lực, năng lực Toán học, năng lực Phát hiện và giải quyết vấn đề, năng lực Phát hiện và giải quyết vấn đề trong dạy học toán và dạy học phát hiện và giải quyết vấn đề Luận văn cũng đã trình bầy những hiểu biết về PISA, một vài nét chính về nội dung của Toán học trong PISA

Luận văn cũng nêu được một số vấn đề thực tế như vai trò, vị trí, nội dung của chủ đề Tổ hợp – Xác suất trong chương trình toán phổ thông; tổng quan về thực trạng việc dạy học phần Tổ hợp – Xác suất ở trường phổ thông; tổng quan về việc tiếp cận các dạng đề thi PISA trong trường phổ thông Tất cả cơ sở lý luận và thực trạng trên nhằm mục đích cho việc nghiên cứu các biện pháp sẽ được trình bầy ở chương 2

Trang 35

27

CHƯƠNG 2: XÂY DỰNG BỘ CÂU HỎI DẠNG PISA ĐỊNH HƯỚNG PHÁT TRIỂN NĂNG LỰC PHÁT HIỆN VÀ GIẢI QUYẾT VẤN ĐỀ

CHO HỌC SINH PHẦN TỔ HỢP – XÁC SUẤT

2.1 Nguyên tắc xây dựng bộ câu hỏi dạng PISA định hướng phát triển năng lực phát hiện và giải quyết vấn đề cho học sinh phần Tổ hợp – Xác suất

2.1.1 Nguyên tắc 1: Đảm bảo tính khoa học, tính tư tưởn, tính thực tiễn

Nhiệm vụ quan trọng của quá trình dạy học nói chung và dạy toán nói riêng là phải cung cấp cho học sinh những kiến thức khoa học hiện đại về thế giới và phải trang bị cho học sinh những kỹ năng vận dụng vào cuộc sống Đặc biệt định hướng giáo dục đào tạo theo hướng phát triển phẩm chất, năng lực, lý tưởng, truyền thống, lối sống, định hướng nghề nghiệp cho học sinh nhằm đảm bảo cho học sinh có đủ những kiến thức, kỹ năng cần thiết (đủ tài)

và đủ đức để giải quyết những tình huống, những vấn đề trong cuộc sống

Có thể thấy rằng Toán học cũng là một môn khoa học bắt nguồn từ những nhu cầu, những tình huống trong thực tiễn cuộc sống và cuối cùng cũng quay về để phục vụ thực tiễn cuộc sống, mối quan hệ này có thể hình dung qua sơ đồ sau:

Sơ đồ 2.1: Mối quan hệ giữa thực tiễn và Toán học

Hơn nữa thực tiễn là công cụ kiểm tra đánh giá năng lực, qua thực tiễn

mà năng lực sẽ được hình thành tôi luyện Chính vì vậy trong dạy học cần phải thực hiện đồng thời nhiều nhiệm vụ: bồi dưỡng trí tuệ và bồi dưỡng năng lực nhất là năng lực phát hiện và giải quyết vấn đề, đồng thời cả phẩm chất, đạo đức cho học sinh

Ứng dụng

Trang 36

28

Trong bản thân khoa học toán học cũng như trong môn toán ở trường phổ thông đã có sự thống nhất của tính khoa học, tính tư tưởng và tính thực tiễn Về tính khoa học, toán học bản thân đã phải đòi hỏi yêu cầu về sự chính xác về mặt toán học và yêu cầu chính xác cả về mặt triết học Khi trang bị, dạy học cho học sinh những kiến thức toán học chính xác cũng đồng thời đã bồi dưỡng cho học sinh tính cẩn thận, chính xác, một phẩm chất không thể thiếu của người lao động Khi hình thành cho học sinh những phương pháp suy nghĩ và làm việc của khoa học toán học, chẳng hạn cách xem xét sự vật trong trạng thái vận động và phụ thuộc lẫn nhau của khái niệm hàm, các kết quả có thể xuất hiện của hiện tượng khách quan trong biến ngẫu nhiên, xác suất, thì đó cũng là những phương pháp đúng đắn về mặt triết học, tức là phù hợp với thế giới quan duy vật biện chứng có tác dụng giáo dục tư tưởng, bồi dưỡng thế giới quan Sự chính xác về triết học cũng đòi hỏi mối liên hệ giữa toán học và thực tiễn, điều này cũng thể hiện sự thống nhất của tính khoa học, tính tư tưởng và tính thực tiễn

Các môn học nói chung và môn toán nói riêng sẽ thật nhàm chán nếu giáo viên chỉ đưa ra những khái niệm, những định lý, công thức một cách khô khan, hàn lâm Các bài toán, các câu hỏi cũng vậy, sẽ không gây được hứng thú cho học sinh nếu không gây được “vấn đề” trong đó Việc học cũng sẽ không thành công nếu học sinh của chúng ta không thấy được động cơ, hứng thú học tập Phải làm sao cho học sinh có được niềm tin, hoài bão, sự cố gắng phấn đấu đồng thời học sinh cũng phải thấy được thỏa mãn nhu cầu của chính học sinh, nhu cầu hiểu biết, nhu cầu giải quyết vấn đề

Chính vì vậy việc dạy học, thiết kế bài giảng, biên soạn bài tập của người giáo viên luôn phải đảm bảo cả tính khoa học, giáo dục và thực tiễn Việc xây dựng câu hỏi dạng PISA định hướng phát triển năng lực Phát hiện

và giải quyết vấn đề cho học sinh cũng vậy, luôn phải đảm bảo tính khoa học chính xác, tính tư tưởng đúng đắn và tính thực tiễn phù hợp

Trang 37

29

Ví dụ 2.1: Bài toán Đầu phát bị lỗi [3, tr 69-70]

Công ty điện tử gia dụng sản xuất hai loại thiết bị điện tử: đàu phát âm thanh và đầu phát hình Vào cuối mỗi ngày, các đầu phát được kiểm tra, những đầu phát nào bị lỗi sẽ bị loại và chuyển sang bộ phận sửa chữa Bảng dưới đây cho biết số lượng trung bình đầu phát của mỗi loại được sản xuất và

tỉ lệ trung bình đầu phát bị lỗi mỗi ngày

Hình 2.1 Bài toán Đầu phát bị lỗi

Loại đầu phát Số lượng trung bình đầu

phát sản xuất mỗi ngày

Tỷ lệ trung bình đầu phát bị lỗi mỗi ngày

Dưới đây là ba nhận định về việc sản xuất của Công ty Điện tử gia dụng Những nhận định nào đúng? Hãy khoanh tròn “Có” hoặc “Không” ứng với mỗi nhận định sau

Nhận định Nhận định này có đúng hay không

Nếu chọn ngẫu nhiên một đầu phát âm

thanh trong số các sản phẩm sản xuất

trong ngày để kiểm tra, khả năng để đầu

phát đó cần được sửa chữa là 0,03

Có / Không

Trang 38

30

Phân tích bài toán: Bài toán gắn liền với thực tiễn đời sống, sản xuất, bài toán có nhiều tình huống có “vấn đề” gây được hứng thú, sự tò mò tìm hiểu, thôi thúc phát hiện vấn đề và giải quyết vấn đề của học sinh Phân tích bài toán cho thấy:

Tính khoa học Tính giáo dục Tính thực tiễn Năng lực, phẩm

chất được hình thành

là phải khắc phục sửa chữa

- Thực tiễn của đời sống, sản xuất

- Năng lực phát hiện và giải quyết vấn đề

- Phẩm chất trung thực, chăm chỉ có tinh thần trách nhiệm

Ví dụ 2.2: Bài toán Ván trượt [4, tr 110-111]

Eric là một người hâm mộ môn lướt ván Anh ấy đến một cửa hàng tên SKATER để xem xét về giá cả Ở cửa hàng này, bạn có thể mua bộ ván trượt hoàn chỉnh hoặc mua lẻ bàn trượt, một bộ 4 bánh xe, một bộ 2 trục đỡ và một

Trang 39

31

Câu hỏi 1: Với 3 loại bàn trượt khác nhau, 2 loại bánh xe, 2 bộ phận cứng khác nhau nhưng chỉ có một bộ trục kể trên, Eric có thể làm được bao nhiêu chiếc ván trượt?

và giải quyết được vấn đề học sinh có thể áp dụng vào trường hợp thực tế khi gặp phải sau này Chính vì vậy ngoài tính khoa học vận dụng, thực hành được

2 quy tắc đếm (quy tắc cộng và quy tắc nhân) học sinh còn hiểu được cấu tạo của một ván trượt, cách mua sắm phù hợp nhất trong các tình huống tương tự

mà sẽ gặp phải trong cuộc sống từ đó cũng định hướng giáo dục, rèn luyện cho học sinh tư tưởng, ý thức phải biết lựa chọn phù hợp, tiết kiệm, không hoang phí

2.1.2 Nguyên tắc 2: Đảm bảo sự thống nhất giữa cụ thể và trừu tượng

Trong quá trình dạy học, giáo viên có thể cho học sinh tiếp xúc trực tiếp với

sự vật, hiện tượng hay hình tượng của chúng, từ đó hình thành khái niệm, quy luật, lý thuyết hoặc ngược lại có thể từ việc lĩnh hội những tri thức lý thuyết

Trang 40

32

trước rồi quay trở lại nhận định, xem xét để kiểm nghiệm lại lý thuyết từ những

sự vật, hiện tượng cụ thể Việc vận dụng nguyên tắc này bao giờ cũng đảm bảo mối qua lại, sự thống nhất giữa tư duy cụ thể và tư duy trừu tượng

Bản thân các tri thức khoa học nói chung và tri thức toán học nói riêng là một sự thống nhất giữa cái cụ thể và cái trừu tượng Muốn cho việc dạy học đạt hiệu quả tốt cũng như muốn phát triển được năng lực phát hiện và giải quyết vấn đề cho học sinh thì cần khuyến khích và chú trọng tạo điều kiện cho học sinh tiến hành hai quá trình trừu tượng hóa và cụ thể hóa, thuận nghịch nhưng lại liên hệ mật thiết, thống nhất với nhau

Do vậy, việc đảm bảo sự thống nhất giữa cụ thể và trừu tượng là không thể thiếu được trong nghiên cứu này

Ví dụ 2.3: Bài toán Những chiếc kẹo màu [4, tr 87-88]

Mẹ của Robert cho phép cậu bé chọn một chiếc kẹo trong một túi Cậu

bé không nhìn thấy những chiếc kẹo Số lượng kẹo của mỗi màu được biểu

diễn trong biểu đồ sau:

Hình 2.3: Bài toán những chiếc kẹo màu

Khả năng chọn được một chiếc kẹo màu đỏ của Robert là bao nhiêu?

Hồng Tím Nâu

Túi kẹo

Column2 Column3 Column4

Ngày đăng: 17/03/2021, 07:46

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w