Cáckết quả trong luận án là trung thực, chưa từng được công bố và sử dụng để bảo vệ trong bất NGHIÊN CỨU PHƯƠNG PHÁP ĐIỀU KHIỂN DỰ BÁO CHO CÁC BỘ NGHỊCH LƯU ĐA MỨC RESEARCH ON MODEL PR
Trang 1LỜI CAM ĐOAN
Tôi xin cam đoan đây là công trình của tôi Tất cả các ấn phẩm được
công bố chung với các cán bộ hướng dẫn khoa học và các đồng nghiệp đã
được sự đồng ý của các tác giả trước khi đưa vào luận án Cáckết quả trong
luận án là trung thực, chưa từng được công bố và sử dụng để bảo vệ trong bất
NGHIÊN CỨU PHƯƠNG PHÁP ĐIỀU KHIỂN DỰ BÁO
CHO CÁC BỘ NGHỊCH LƯU ĐA MỨC
RESEARCH ON MODEL PREDICTIVE CONTROL FOR
MULTILEVEL CONVERTERS
LUẬN VĂN THẠC SĨ KHOA HỌC ĐIỂU KHIỂN VÀ TỰ ĐỘNG HÓA
HÀ NỘI-2018
Trang 2LỜI CAM ĐOAN
Tôi xin cam đoan đây là công trình của tôi Tất cả các ấn phẩm được
công bố chung với các cán bộ hướng dẫn khoa học và các đồng nghiệp đã
được sự đồng ý của các tác giả trước khi đưa vào luận án Cáckết quả trong
luận án là trung thực, chưa từng được công bố và sử dụng để bảo vệ trong bất
NGHIÊN CỨU PHƯƠNG PHÁP ĐIỀU KHIỂN DỰ BÁO
CHO CÁC BỘ NGHỊCH LƯU ĐA MỨC
RESEARCH ON MODEL PREDICTIVE CONTROL FOR
Trang 3LỜI CAM ĐOAN
Tôi xin cam đoan bản luận này là công trình của riêng tôi, do tôi tự thiết kế dưới
sự hướng dẫn của thầy giáo PGS TS Trần Trọng Minh Các số liệu và kết quả là hoàn toàn trung thực
Để hoàn thành luận văn này tôi chỉ sử dụng những tài liệu được ghi trong danh mục tài liệu tham khảo và không sao chép hay sử dụng bất kỳ tài liệu nào khác Nếu phát hiện có sự sao chép tôi xin chịu hoàn toàn trách nhiệm
Hà Nội, ngày 10 tháng 10 năm 2018
Tác giả luận văn
Trang 4TỔNG QUAN VỀ ĐỀ TÀI
1 Lý do chọn đề tài
Điều khiển các bộ biến đổi đa mức như cầu H nối tầng đặt ra nhiều vấn đề do số lượng các module tăng nên nhiều theo số mức Bằng các cấu trúc điều khiển thông thường thì các mạch vòng điều khiển sẽ rất phức tạp Phương pháp điều khiển dự báo FCS-MPC dựa trên tính toán tối ưu hàm mục tiêu (cost funcion) trong không gian hữu hạn các trạng thái làm việc có thể cho phép xây dựng nên một hệ thống điều khiển có cấu trúc đơn giản hơn, lược bỏ khâu điều chế PWM, có thể đưa đến những ứng dụng thực tế
2 Đối tượng nghiên cứu
Nghiên cứu phương pháp điều khiển dự báo dựa trên không gian hữu hạn các trạng thái làm việc của sơ đồ nghịch lưu đa mức cấu trúc cầu H nối tầng Sau đó áp dụng thuật toán điều khiển này cho ứng dụng nghịch lưu nối lưới và điều khiển động cơ không đồng bộ Trong khuân khổ cuốn luận văn này, tính đúng đắn của thuật toán điều khiển dự báo FCS-MPC sẽ được kiểm chứng thông qua mô hình mô phỏng trên phần mềm Matlab-Simulink
3 Đóng góp khoa học trong luận văn
Đưa ra thuật toán điều khiển dự báo FCS-MPC cho bộ biến đổi 7 mức cấu trúc cầu
H nối tầng với số bước tính là hai bước, giúp bù thời gian trễ trong quá trình tính toán, đo lường, deadtime, v.v… khi triển khai thực nghiệm Thuật toán lựa chọn tập hợp các vector liền kề giúp giảm đáng kể khối lượng tính toán khi tối ưu hóa hàm mục tiêu
Trang 5THESIS OVERVIEW
1 Problem statement
Control multilevel converters such as cascaded H-Bridge multilevel converters pose many problems as the number of module increases By the conventional control strategies, the control loops will be very complex The finite control set model predictive control (FCS-MPC) control strategies is based on cost function optimization in the finite number of switch states This could allow the control system to be simpler structure, the system does not need a modulator, can be led
to practical applications
2 Object of the study
The FCS-MPC control strategy for three-phase CHB multilevel converter is studied in this thesis It is applied in grid-connected CHB as DC-AC converter for isolated DC sources such as PV panels generating power to gird and an IM driver application Within the framework of the thesis, the correctness of the MPC algorithm will be verified through Matlab-Simulink software
3 My contributions
Proposal FCS-MPC control strategy for three-phase CHB seven level, predictive horizon at two-steps compensate delay time The subset of adjacent vector state (SAVS) method is proposed to reduce computational when optimizing cost function
Trang 6Acknowledgments
First of all, I would like to express sincere thanks to my supervisor : Assos Prof Tran Trong Minh for his constant encouragement and guidance He has walked me through all the stages of the work of my Master of Science project The work in this thesis is based on research carried out at the Institute for Control Engineering and Automation (ICEA), Hanoi University of Science and Technology (HUST)
I would like gratitude ICEA as well as the financial support provided by the National project number: KC.05.03/16-20, “Nghiên cứu, thiết kế và chế tạo hệ thống khắc phục nhanh sự cố tăng/giảm điện áp ngắn hạn cho phụ tải” and: ĐTĐLCN.44/16, “Nghiên cứu thiết kế và chế tạo hệ truyền động servo xoay chiều
ba pha”
Trang 7Contents
Contents
Acknowledgments 1
Contents 2
List of figures 4
List of tables 5
List of abbreviations 6
1 Overview FCS-MPC for CHB multilevel converter 7
1.1 Three-phase CHB multilevel converter 7
1.1.1 Structure of a three-phase CHB multilevel converter 7
1.1.2 Modulation techniques 9
1.2 Modeling of three-phase CHB multilevel converter 11
1.3 FCS-MPC control strategy 14
2 FCS-MPC for gird-connected three-phase CHB 17
2.1 FCS-MPC for grid-connected formulation 17
2.1.1 Discrete-time model predictive current control 18
2.1.2 Cost funcion optimization and vector state selection 19
2.1.3 Subset of adjacent vector state 20
2.2 Current reference generation 21
2.3 Simulation results .22
2.4 Conclusion 24
3 FCS-MPC based current control of an IM 25
3.1 Mathematical model of an IM 25
3.2 FCS-MPC for IM formulation 25
3.2.1 The required signal estimation 27
3.2.2 Discrete-time model predictive current .27
3.2.3 Cost funcion optimization and vector state selection 28
3.3 Simulation results .28
3.4 Conclusion 31
Trang 84 Summary and future works 32
References 33
Appendix A Simulation FCS-MPC for a gird-connected details 35
A.1 Simulation model 35
A.2 MPC algorithm function 36
Appendix B Simulation FCS-MPC for an IM details 37
B.1 Simulation model 37
B.2 MPC algorithm function 38
Appendix C List of publications 40
Trang 9List of figures
List of figures
Figure 1.1 H-Bridge switch state 7
Figure 1.2 Three-phase CHB seven level converter 8
Figure 1.3 SPWM multicarrier strategy 9
Figure 1.4 Space vector for three-phase CHB three level .10
Figure 1.5 H-Bridge converter 11
Figure 1.6 Vector state in CHB seven level converter 13
Figure 1.7 Classification of MPC strategies applied to power converter 14
Figure 1.8 FCS-MPC block diagram 15
Figure 2.1 Block diagram of FCS-MPC gird-connected 17
Figure 2.2 Vector state for CHB seven level three-phase 20
Figure 2.3 Simulation results of the proposed FCS-MPC 23
Figure 2.4 FFT analysis output current (phase A) .24
Figure 3.1 Block diagram of FCS-MPC for IM 26
Figure 3.2 Simulation results of output current and voltage 29
Figure 3.3 Simulation results of the proposed FCS-MPC 30
Figure 3.4 FFT analysis output current (phase A) .31
Figure A.1 Simulation overview of FCS-MPC for a grid-connected 35
Figure A.2 FCS-MPC controller in subsystem 36
Figure B.1 Simulation overview of FCS-MPC for an IM 37
Figure B.2 FCS-MPC in subsystem 38
Trang 10List of tables
Table 1.1 Switch state H-Bridge converter 11
Table 1.2 Level state CHB seven level converter 12
Table 2.1 Simulation FCS-MPC for grid connected parameters 22
Table 3.1 Simulation FCS-MPC for IM parameters 28
Trang 11List of abbreviations
List of abbreviations
NPC Neutral diode clamped multilevel converters
FC Flying capacitor multilevel converters
MMC Modular multilevel converters
CHB Cascaded H-Bridge multilevel conveters
IGBT Insulated Gate Bipolar Transistors
APOD Alternative phase opposite disposition
POD Phase opposite disposition
SVM Space vector modulation
MPC Model predictive control
FCS-MPC Finite control set model predictive control
CCS-MPC Continuous control set model predictive control OSV-MPC Optimal switching vector model predictive control OSS-MPC Optimal switching sequence model predictive control
SAVS Subset of adjacent vector state
RMS Root mean square
FFT Fast Fourier transform
THD Total harmonic distortion
FOC Field oriented control
Trang 12Chapter 1
Overview FCS-MPC for CHB multilevel converter
Multilevel converters include: Neutral diode clamped (NPC), flying capacitor (FC), modular multilevel converters (MMC) and cascaded H-Bridge (CHB) However, technology of CHB is one of the well known, most advantageous and basic method
Control CHB multilevel converters will be complex when number of cells increase The FCS-MPC control strategy can be considered as a solution simply handles this problem
1.1 Three-phase CHB multilevel converter
1.1.1 Structure of a three-phase CHB multilevel converter
The Figure 1.1 shows three switch state of H-Bridge (as named is cell), each cell
make three level voltage: -1; 0 and 1
Trang 13Chapter 1 Overview FCS-MPC for CHB multilevel converter
In CHB multilevel converter, number of cells are connected in series Each cell has separate DC source which is obtained from fuel cells, batteries, capacitors, transformers,…
Activity of m cells in each phase will make 2m+1 voltage level Figure 1.2
is example of CHB three-phase seven level Three-phase CHB multilevel converter is simply like three single-phase converter connected in wye configuration
• It doesn’t need capacitors or diodes for clamping
• Entire IGBT switching in basic fundamental frequency (or near this frequency), so that reduce power lose switch
• The harmonics reduce because IGBT switching small frequency
Trang 14• The wave is quite sinusoidal in nature
Disadvantages:
• CHB needs separate DC sources for each leg
• Controller will be complex if number of cells increase
Additional detail can be found in Appendix C [2], [3] and [4]
1.1.2 Modulation techniques
a Sin-PWM (SPWM) multicarrier strategy
In the SPWM, each phase uses single sinusoidal reference For m cells need 2m
triangular carriers The carriers have the same frequency, the same peak to peak amplitude Sinusoidal reference is compared with each carrier to determine the switching output voltages for the power converter
Figure 1.3 SPWM multicarrier strategy
There are four strategies of multicarrier PWM Figure 1.3 is showed
multicarrier PWM strategy for single-phase CHB five level It requests four triangle carriers and only one sinusoidal reference
Trang 15Chapter 1 Overview FCS-MPC for CHB multilevel converter
• Phase-shift (PS) carrier PWM strategy Each carrier is phase-shift by 360°/4=90° from it’s adjacent carrier
• Phase disposition (PD), all carriers are in phase 0°
• Alternative phase opposite disposition (APOD), all carriers are alternatively
b Space vector modulation (SVM)
SVM technique reduces the influence of common-mode voltages and this avoids the use of any triangular carriers SVM conveniently provides more flexibility such
as redundant switching sequences, adjustable duty cycles; and it is more suited to digital implementations
V 1
(1,1,0) (0,0,-1)
V2
(-1,0,-1) (0,1,0)
V3
(0,1,1) (-1,0,0)
V 4
(-1,-1,0) (0,0,1)
V5
(1,0,1) (0,-1,0)
V0
2 1
1 3 4
2
Figure 1.4 Space vector for three-phase CHB three level
These advantages of SVM can lead to a significantly improved performance
of multilevel converters, especially when the level number of the converter is large
Trang 16The space vector of a three-phase CHB three level shows in Figure 1.4
However, SVM for higher level converter is difficult There generally are 6(n-1) 2
triangles in the space vector diagram of a three-phase n level converter, reference
vector can be located within any triangle SVM selects suitable switch states of the located triangle and apply them for corresponding need duty cycles in an switching sequence
1.2 Modeling of three-phase CHB multilevel converter
Each cell of converter is described in Figure 1.5
Figure 1.5 H-Bridge converter
Sign IGBT switch state: “0” corresponding IGBT is off and “1”
corresponding IGBT is on Table 1.1 shows switch state each cell Output voltage
obtained are 0; V dc and –V dc corresponding switch state is 0; 1 and -1
Table 1.1 Switch state H-Bridge converter Gate state
Trang 17Chapter 1 Overview FCS-MPC for CHB multilevel converter
common-mode voltagev ZN
Table 1.2 Level state CHB seven level converter
1, 0, -1, -2, -3}*V dc, this is called level state {3, 2, 1, 0, -1, -2, -3}
Level state phase A, B and C are grand total 127 reasonable different vector
state v
Output voltage each cell:
11
Trang 18V2 V3
V4
V5 V6
V7 V8
V9 V10
V22 V23 V24
V37 V38 V39 V40
V41 V42 V43
V44 V45
V46
V47
V48
V50 V49
V51
V52
V53 V54 V55 V56 V57
V58 V59 V60
V62 V63 V64 V65
V66 V67 V68 V69
V70 V71
V91 V92 V93 V94 V95 V96
V97 V98
V99 V100
V101 V102 V103
β
Figure 1.6 Vector state in CHB seven level converter
Because of v AZ+v BZ +v CZ =0, so common-mode v ZN as express:
13
The vector state v can be expressed in terms of complex coordinate by
using the Clarke transformation:
Trang 19Chapter 1 Overview FCS-MPC for CHB multilevel converter
future behavior of the controlled variables over a predictive horizon, n-steps The
information is used by the MPC control strategy to provide the control action sequence for the system by optimizing a user-defined cost function It should be noted that the algorithm is executed again every sampling period and only the first
value of the optimal sequence is applied to the system at instant k
Model predictive control
Figure 1.7 Classification of MPC strategies applied to power converter
Classification of MPC strategy applied to power converter is showed in
Figure 1.7, [2] MPC strategy can be divided into two types: continuous control
set MPC (CCS-MPC) and discrete of the power converters finite control set MPC (FCS-MPC)
The CCS-MPC computes a continuous control signal and then uses a modulator to generate output voltage in the power converter The main advantage
of CCS-MPC when applied to power converter is that it produces a fixed switching frequency The main disadvantage of CCS-MPC is present a complex formulation
of the MPC problem
Trang 20The FCS-MPC based on finite number of switching state to formulate the MPC algorithm and does not need a modulator FCS-MPC can be divided into two types: optimal switching vector MPC (OSV-MPC) and optimal switching sequence MPC (OSS-MPC) OSV-MPC is the most popular MPC control strategy for power converter It uses the output vector state of the power converter as the control set The main advantage of OSV-MPC: it only calculates prediction for this control set, therefore it reduces the optimal problem to an enumerated search algorithm This makes the MPC strategy formulation very intuitive The disadvantage of OSV-MPC is that only one output optimal vector state is applied during the complete sampling time period, lead to uncontrolled switching frequency
In FCS-MPC, the prediction model of the system needs to be discretized Therefore, the MPC algorithms are usually implemented in digital hardware like
as DSP or FPGA The common of FCS-MPC regularly uses Euler approximation
to discretize a one-step or multiple-step
Optimizaton Predictive
Load
Measurement Estimation FCS-MPC
Figure 1.8 FCS-MPC block diagram
Figure 1.8 shows FCS-MPC block diagram Assume, control variable x
follow the reference variable x *, procedure design FCS-MPC following basic steps:
• Measurement, estimation the control variable in the sampling time instant
• For every switch states of the converters, predictive (using the mathematical
model) the behavior of variable x in the n-steps time
• Evaluate the cost function for each prediction
Trang 21Chapter 1 Overview FCS-MPC for CHB multilevel converter
• Select the switch states that minimize the cost function, S opt applied to the converters
In the experiment, driver, measurements and IGBT exist delay time The computational time is needed in the predictive control algorithm to predict the variables, and processor delay deteriorates the performance of the predictive control at the experimental investigation To solve this problem, it can be
considered the predictive horizon at (k+n)th sampling time to predict the variables which are compared with the references, and determine the cost functions The
optimum S opt is selected corresponding to the minimum cost function, and applied
it in the power converter
Trang 22Chapter 2
FCS-MPC for gird-connected three-phase CHB
2.1 FCS-MPC for grid-connected formulation
The FCS-MPC control strategy predicts behavior of the load current for each
possible vector state v generated by the power converter The prediction of the
current is based on discretized model of system
Cost function optimization
Prediction (k+2)th
Figure 2.1 Block diagram of FCS-MPC gird-connected
In abc coordinate, a block diagram of predictive current control is described
in Figure 2.1 The procedure designs FCS-MPC for grid-connected included
mainly three steps [5]: