1. Trang chủ
  2. » Hóa học

Sáng kiến kinh nghiệm giải Toán chứng minh lớp 7

18 57 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 18
Dung lượng 225,4 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

MC :cạnh huyền chung *** Từ * ;**; ***suy ra FC= ME 2 Cộng 1 và 2 ta được :MD+ME=HF+FC=CH là độ dài không đổi *Nhận định :Đối với hình học lớp 7; qua mỗi bài , mỗi chương có liên quan đế[r]

Trang 1

PHẦN MỞ ĐẦU 1/LÝ DO CHỌN ĐỀ TÀI:

1.1/LÝ DO KHÁCH QUAN :

-Qua nhiều năm thực tế giảng dạy, thường thì đề bài phần tự luận khách quan học sinh không giải được thậm chí đề thi học kỳ, phần hình học học sinh không giải hoặc không giải được Cho thấy thực tiễn học sinh rất sợ môn học này

-Định hướng giải toán chứng minh hình học nói chung , chứng minh hai đoạn thẳng bằng nhau , hai góc bằng nhau nói riêng khắc phục những nhược điểm giải toán hình học -Giáo viên quá chú ý đến việc nắm khái niệm, định lý thiếu sự quan tâm rèn luyện các thao tác tư duy, trí tưởng tượng không gian của các em đi đến tách toán học ra khỏi thực

tế Làm cho học sinh không hứng thú khi học bộ môn

-Rèn luyện kỹ năng suy luận lôgic Vận dụng toán học vào thực tế, giúp đỡ các em trong suy nghĩ làm toán kể cả vật lý, hoá học

1.2/LÝ DO CHỦ QUAN :

-Môn hình học là môn học trừu tượng đa số học sinh chưa thực sự đam mê và học tập còn gượng ép, chưa thật tự tin khi giải các bài tập

-Hình thành phương pháp chứng minh hình học hai đoạn thẳng bằng nhau, hai góc bằng nhau để làm tiền đề học môn hình học Tạo căn bản để lên học những lớp trên, xây dựng được niềm tin và cảm thấy nhẹ nhàng như những môn học khác

-Môn hình học rất gần gũi với cuộc sống thực tế hàng ngày, trang bị một số kiến thức cơ bản hình thành tư duy sáng tạo cho học sinh

-Môn hình học lớp 7 nếu học sinh nắm vững các kiến thức cơ bản không những giúp học sinh hứng thú môn học này, mà còn tạo căn bản để học ở những lớp trên.Vì vậy tôi chọn

đề tài này nhằm mục đích nâng cao chất lượng các tiết luyện tập, kiểm tra hình học ở trong nhà trường THCS

2/MỤC ĐÍCH NGHIÊN CỨU:

Nhằm phát triển tư duy lôgic và hình thành cho học sinh những năng lực thích ứng với những thay đổi trong thực tiễn để tự chủ, tự lập trong lao động, trong cuộc sống để hoà nhập với môi trường nghề nghiệp Hình học tạo cho học sinh có năng lực hành động, năng lực ứng xử, năng lực tự học, hình thành cho học sinh những diễn đạt bằng lời, bằng viết Kích thích trí tưởng tượng, gây hứng thú học toán góp phần rèn luyện phương pháp học tập và rèn luyện có kế hoạch khoa học, chủ động, linh hoạt, sáng tạo

3/NHIỆM VỤ VÀ PHƯƠNG PHÁP NGHIÊN CỨU:

3.1NHIỆM VỤ

-Giúp giáo viên dạy lớp nâng cao chất lượng lớp mình, hạn chế những sai sót của học sinh khi giải toán Tạo được hứng thú học toán của học sinh

-Định hướng giải quyết một bài toán, có một biện pháp thích hợp với đề bài Tổng kết được các dạng toán Có được niềm tin vững vàng khi giải toán

Nhằm tích cực hoá hoạt động của học sinh và rèn luyện kỹ năng chứng minh, giáo viên chỉ cho học sinh đặc điểm chính của bài và cách chứng minh Những bài tập sau chỉ cần chỉ sự giống và khác nhau, từ đó học sinh sẽ tìm cách đưa về chứng minh cơ bản Vì các bài toán không nặng về việc phân tích để tìm ra cách chứnh minh và có các phần trình bày lời giải tương tự nên giáo viên có thể dành nhiều thời gian để rèn cách trình bày lời giải cho học sinh

Trang 2

Trong phương pháp dạy học đổi mới, giáo viên cần tạo mối quan hệ hợp lý giữa dạy kiến thức và kỹ năng với dạy phương pháp suy nghĩ và hành động Đối với bộ môn toán, cần

có quan điểm là tư duy quan trọng hơn kiến thức, nắm vững phương pháp quan trọng hơn lý thuyết Dạy toán là phải dạy suy nghĩ, thành thạo các thao tác tư duy: Phân tích, tổng hợp, trừu tượng hoá, đặc biệt hoá, tương tự… Trong đó phân tích, tổng hợp là nền tảng Phải cung cấp cho học sinh những tri thức về phương pháp để cho học sinh có thể

tự tìm tòi, tự mình phát hiện và phát triển vấn đề, dự đoán được các bước thực hiện, tìm được hướng giải của một bài toán, hướng chứng minh một định lý, giúp học sinh hiểu sâu sắc bản chất các khái niệm, mệnh đề, công thức, các chứng minh, từ đó mà nhớ lâu kiến thức toán học và nếu quên thì có thể tự mình tìm lại được

3.2PHƯƠNG PHÁP NGHIÊN CỨU

a)Đầu tư thời gian thích hợp cho việc soạn bài, chuẩn bị kỹ hệ thống câu hỏi Dự kiến những khó khăn mà học sinh phải vượt qua Các câu hỏi phải tác động tích cực đến ba đối tượng và bài tập hợp lý để tất cả học sinh trong lớp tích cực tham gia trả lời và làm bài tập Tạo không khí sinh động khi học tiết luyện tập, tránh nhàm chán, đơn điệu hay chỉ lưu ý đến một đối tượng học sinh

b)Tạo động cơ ham muốn những khám phá mới khi giải một bài tập mới nên cần dành thời gian cho học sinh thảo luận với nhau theo nhóm Học sinh có thể tranh luận với nhau hoặc tranh luận với giáo viên về một vấn đề cần giải quyết Hướng giải hoặc ý kiến đóng góp của học sinh cần được trân trọng và phát huy nhằm tạo động lực thúc đẩy việc đam mê học toán của học sinh

-Các tiết dạy phải vừa ôn, vừa luyện học sinh phải nêu được các quy tắc, định lý đã học

để giải quyết phần bài tập hay đang học bài mới

d)Các dạng hình thành phương pháp chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau:

-Hai đoạn thẳng hoặc hai góc là hai cạnh hoặc hai góc tương ứng của hai tam giác bằng nhau: Áp dụng các trường hợp bằng nhau của tam giác thường, tam giác vuông, các đường trung tuyến, trung trực, đường cao, phân giác tương ứng bằng nhau

- Trung trực của một đoạn thẳng: Chứng minh M là trung điểm của đoạn thẳng AB thì M

AB và MA = MB

- Hai đoạn thẳng cùng bằng đoạn thẳng thứ ba, hai góc cùng bằng góc thứ ba

- Đường trung trực của đoạng thẳng, tam giác Giao điểm ba đường trung trực của tam giác cách đều ba đỉnh

-Hai đoạn thẳng ấy là hai đoạn thẳng bị chắn bởi hai đường thẳng song song , ứng dụng các cặp góc so le trong, đồng vị bằng nhau góc đáy bằng nhau đường xiên Cạnh đối diện với các góc bằng nhau

- Dùng tính chất của tam giác cân các cạnh bên bằng nhau, hoặc các góc đối

- Hai đoạn thẳng ấy là hai đường xiên hay hình chiếu của diện với các cạnh bằng nhau trong một tam giác hay hai tam giác bằng nhau

- Điểm nằm trên phân giác của góc cách đều hai cạnh của góc Giao điểm của ba tia phân giác cách đều ba cạnh tam giác

-Áp dụng tính chất đường trung tuyến của tam giác Trung tuyến ứng với cạnh huyền của tam giác vuông

-Một số câu hỏi trắc nghiệm để củng cố các phần đã học

Trang 3

4/PHẠM VI NGHIÊN CỨU

Phạm vi : Đề tài được thực hiện trong phạm vi hai lớp 7A và 7Bcủa trường THCS Lệ Xá huyện Tiên Lữ Tỉnh Hưng Yên

Thời gian nghiên cứu: năm học 2006-2007; 2007-2008; 2008- 2009

5/ĐIỂM MỚI TRONG PHƯƠNG PHÁP NGHIÊN CỨU:

-Hình thành phương pháp chứng minh hình học nhằm hình thành những kĩ năng, kĩ xảo

để thực hiện bài tập có tổ chức, có kế hoạch Học sinh phát huy được tính độc lập, sáng tạo để hiểu bài sâu hơn, chắc hơn phát triển năng lực tư duy và phẩm chất trí tuệ Ngoài

ra còn có tác dụng hình thành thế giới quan duy vật biện chứng, mở rộng tầm hiểu biết, xây dựng niềm tin có phẩm chất người lao động mới Do đó qua việc giải một bài tập toán mà đánh giá được mức độ hiểu bài và kết quả của học sinh

-Các em có độ tuổi từ 11-14 là lứa tuổi “tập làm người lớn” nên rất tích cực tham gia vào các hình thức học tập sáng tạo Thế nên hình thành phương pháp chứng minh hình học cho học sinh là tạo tính tự giác, tự khám phá để nâng cao chất lượng dưới sự hướng dẫn của giáo viên



Trang 4

PHẦN NỘI DUNG 1/LỊCH SỬ CỦA SÁNG KIẾN KINH NGHIỆM:

- Về học sinh chưa hình thành được phương pháp giải một bài toán hình học, trong giờ học chỉ chờ bài giải mẫu để chép, ít chịu suy nghĩ, tìm tòi lời giải

- Về giáo viên cũng có những khó khăn như bài tập toán đa dạng, phong phú nếu không lựa chọn thích hợp thì bài tập quá khó hoặc quá dễ và chỉ giải một cách đơn thuần cho học sinh ghi mà không định hướng được cho học sinh tư duy khi gặp một bài toán khác -Khi thay sách thì giáo viên còn nhiều lúng túng với chương trình mới, chưa tìm ra một

hệ thống bài tập thích hợp để hình thành cho học sinh một phương pháp tích cực cho học sinh

-Phương pháp khảo sát : Khi luyện tập xong bài ba trường hợp bằng nhau của tam giác, tôi cho học sinh làm bài kiểm tra 15 phút Đề bài vận dụng chứng minh hai tam giác bằng nhau, từ đó suy ra hai cạnh; hai góc tương ứng bằng nhau Kết quả cho thấy số học sinh đạt điểm giỏi chưa cao, vẫn còn nhiều học sinh bị điểm kém Kết quả 59% trên trung bình và tiếp đó đã củng cố nhưng thi học kỳ I đạt 68% trên trung bình Khi thực hiện đề tài áp dụng nó vào thực tiễn trong những năm sau kết quả 80% trên trung bình trong phần hình học đã tạo được dộng lực học toán thực sự trong học sinh

2/CƠ SỞ LÝ LUẬN :

-Phân môn hình học là một bộ phận của bộ môn toán , nó khó học hơn phân môn đại số

Vì thế các em rất “sợ” hay rất “ghét” nó Từ đó lơ là trong việc học nhưng thực ra không khó do các em nghĩ mà chỉ vì các em không thuộc định nghĩa , định lý , hệ quả …, không

có được phương pháp chứng minh Từ đó trong quá trình dạy hình học lớp 7 giáo viên phải hình thành hệ thống nhớ các định nghỉa , định lý , hệ quả…và có một hệ thống bài tập thích hợp để minh hoạ cho học sinh dễ hiểu hơn,nhằm tránh những thiếu xót các kiến thức

-Hiện tại học sinh học tập rất máy móc , chỉ dựa vào bài mẫu mà chưa hình thành cho mình một phương pháp thích hợp khi giải quyết một bài toán

-Nhu cầu học tập hiện tại đòi hỏi giáo viên phải có một phương pháp dạy học hợp lý , học sinh có thái độ học tập tích cực Nhưng mặt trái của kinh tế thị trường một số phụ huynh và học sinh không xem trọng việc học , học là để đối phó Chúng ta cần giáo dục học sinh hiểu hơn những gì ta biết như một giọt nước ,những điều ta chưa biết là biển cả mênh mông

-Giúp học sinh hiểu được học toán giúp ta rất nhiều vào cuộc sống thực tế hàng ngày ,nên khi giải các bài tập giáo viên cần liên hệ thực tế để bài toán tránh những đơn điệu , nhàm chán

-Khuyến khích, trân trọng ý kiến, phương pháp giải của học sinh, chấn chỉnh kịp thời những sai sót, uốn nắn các khuyết điểm trong bài giải Ngoài ra giáo viên còn phát động phong trào thi đua và biểu dương những gương sáng học tốt và cần học hỏi kinh nghiệm của các bạn này Phát huy phương pháp đổi mới trong giảng dạy để tạo không khí học tập sinh động để tiết hình học đạt được kết quả tốt

3/THỰC TRẠNG CỦA VẤN ĐỀ :

3.1/Muốn giải toán hình học các em cần có những kỹ năng cơ bản sau:

a)Các em phải thuộc phần lý thuyết :

-Thuộc định nghĩa để biết vẽ hình kể cả chứng minh

Trang 5

-Thuộc định lý, tính chất, hệ quả để chứng minh, tính toán.

b)Bài toán gồm hai phần

-Giả thiết : Là những gì đề bài cho trước

-Kết luận : Là những gì đề bài bảo chứng minh hay tính toán

*Lưu ý : Khi tính toán, chứng minh nếu không dùng hết giả thiết là bài toán chắc chắn còn thiếu sót

c)Vẽ hình là vấn đề quan trọng của bài toán, hình vẽ rõ ràng, chính xác thì các em giải quyết dễ dàng Không vẽ hình được hoặc vẽ không đúng là không giải được

*Lưu ý :

+Không vẽ hình đặc biệt hơn hình đã cho trong đầu bài

+Khi vẽ đường phụ thì ghi ngay trên giả thiết những tính chất của đường phụ đó Khi đề bài cho các cạnh hay các góc bằng nhau ta nên ký hiệu trên hình để dễ dàng nhận biết d)Cách dùng ký hiệu toán học để thay thế câu văn, tuyệt đối không dùng theo ý riêng e)Dùng lập luận khi chứng minh , mỗi chi tiết nêu ra lý do tại sao có điều đó ? Trả lời ngay ngắn gọn và ghi trong ngoặc đơn

f)Tìm cách giải : Đây là khâu quan trọng để giải bài toán Các em phải sử dụng những gì

đã học như định nghĩa , định lý và những điều đã biết trong giả thiết để chứng minh phần kết luận

3.2/Khi tìm cách giải các em tự hỏi “Ta cần chứng minh điều gì”? Ví dụ : Chứng minh hai đoạn thẳng bằng nhau , hai góc bằng nhau Các em tự hỏi “Làm cách nào để chứng minh hai đoạn thẳng bằng nhau , hai góc bằng nhau”? Các em tự tìm lấy lời giải Nếu không giải được các em xem lại phần lý thuyết và lần lượt thử từng cách mà giáo viên đã tổng kết thì các em sẽ tìm ra cách giải

Giải một bài toán mở một cánh cửa đã khoá Các em đứng trước một cánh cửa đóng , trong tay có chùm chìa khoá mà không biết chìa nào mở thì các em phài làm gì ? Các em thử từng chìa một cho tới khi tìm được chìa thích hợp với ống khoá Khi chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau ở hình học lớp 7, tôi đã tổng kết và thu thập giúp các em có thể nhanh chóng tìm ra lời giải



4/ NỘI DUNG NGHIÊN CỨU:

4.1)Hai đoạn thẳng, hai góc là hai cạnh , hai góc tươngứng của hai tam giác bằng nhau:

Bài tập:(Bài tập 43 SBT trang 103)

GT ABC :Â= 90 ;BDlà phân giác ; AB=BE 0

KL DA=DE , BÊD = 90 0

B *Tìm tòi lời giải : AD; DE nằm trong tam giác

/ ABD và EBD , dễ dàng nhận thấy 2

\ E đoạn thẳng DA và DE bằng nhau ;

 = BÊD =900

A * Giải tóm tắt : ABD= EBD (c-g-c) 

D C DA = DE và Â = BÊD = 90  0

Trang 6

4.2)Trung điểm của đoạn thẳng :

Bài tập : (Bài tập 48 SBT trang 103)

GT ABC ; KA=KB,EA=EC , KM =KC, EN=EB

KL A là trung điểm của MN

M A N *Tìm tòi lời giải :A là trung điểm

_ của MN thì A,M,N thẳng hàng

= và AM=AN Giáo viên gợi ý: Áp

K _ = E dụng tiên đề Ơ-clit chứng minh

AM// BC và AN// BC N;A,M

B C thẳng hàng AM =AN vì cùng bằng BC A là trung điểm của 

MN

*Giải tóm tắt :KMA KCB(c-g-c) AM=BC;K M=K C Aˆ Bˆ

do đó : AM// BC (1)

Tương tự : EAN  ECB(c-g-c) AN=BC; EÂN=E B

do đó : AN//BC (2)

Từ (1) và (2) suy ra :M;A;N thẳng hàng và AM=AN Vậy A là trung điểm của MN

4.3)Hai đoạn thẳng cùng bằng đoạn thẳng thứ ba:

Bài tập :(Bài tập53SBT trang 104)

A GT ABC :  Bˆ1  Bˆ2;Cˆ1 Cˆ2;OE AB

E D OD AC;OH BC 

O KL OE=OD

*Tìm tòi lời giải : OBE= OBH 

B H C (cạnh huyền -góc nhọn )OE=OH

(cặp cạnh tương ứng)

(cạnh huyền–góc nhọn) OH=OD(cặpcạnh tương ứng)

OCD OCH 

Suy ra : OD=OE ( cùng bằng OH)

4.4/Đường trung trực của đoạn thẳng , tam giác :

Bài tập: GT I thuộc trung trực AB

I thuộc trung trực BC

KL I cách đều 3 đỉnh tam giác

A *Tìm tòi lời giải : Chứng minh

= IA=IB=IC IA = IB vì 2 tam

M giác vuông IMA và IMB bằng nhau

= I IB=IC vì 2 tam giác vuông INB và

B C INC bằng nhau Do đó :IA=IB=IC

| N |

*Giải tóm tắt : IMA IMB ( 2 cạnh góc vuông bằng nhau )

suy ra : IA=IB ( cặp cạnh tương ứng )

Tương tự : INB INC (2 cạnh góc vuông bằng nhau )

Suy ra : IB=IC ( cặp cạnh tương ứng )

Do đó :IA= IB = IC

Vậy : I cách đều ba đỉnh của ABC

Trang 7

4.5/Hai đoạn thẳng ấy là hai đoạn thẳng bị chắn bởi hai đường thẳng song song:

Bài tập : (Bài tập 38 SGK trang 124) A B

GT AB// CD ; AC// BD

KL AB=CD; AC=BD

CAB BDCA  A C D

*Tìm tòi lời giải : Nối BC ta chứng minh

(g-c-g) để suy ra các cạnh tương ứng bằng nhau

DCB

ABC 

*Giải tóm tắt : Nối BC , ta có:

( so le trong )

ABC BCD

BC: cạnh chung

(so le trong) A

AACB CBD A

(g-c-g )

DCB ABC 

AB=CD ; AC=BD ( cặp cạnh tương ứng )

CAB BDCA  A ( cặp góc tương ứng )

4.6/ Dùng tính chất của tam giác cân :

Bài tập : (Bài tập ? 2trang 82 SGK) B C

GT ABC: AH BC ; HB= HC H

KL ABC cân tại A

*Tìm tòi lời giải : Muốn chứng minh ABC cân tại A ta có thể chứng minh AB=AC

(hoặc Bˆ Cˆ ); ta phải chứng minh AHBAHC

*Giải tóm tắt : AHB AHC ( c-g-c)

AB=AC (cặp cạnh tương ứng )

(Hay (cặp góc tương ứng )) Vậy ABC cân tại A

GT ABC cân tại A  A

BD; CE là các E D

trung tuyến

KL BD = CE B C

Tìm tòi lời giải: Đưa hai đoạn thẳng BC, DE vào hai tam giác và chứng minh bằng nhau Chú ý áp dụng tính chất tam giác cân và giả thiết cho AB= AC; AE = ; AD=

2

AB

2

AC

Giải tóm tắt: Xét  ABD và ACE có:

AB = AC ( cạnh bên tam giác cân)

 góc chung

AD = AE = =

2

AB

2

AC

 ABD = ACE ( c-g-c)

 BD = CE

Tương tự: Trong tam giác cân ta chứng minh được hai đường cao, hai phân giác xuất phát từ hai đỉnh của cạnh đáy bằng nhau

Trang 8

Bài tập77/ 107 SBT 1 A

GT  ABC đều

AD = BE = CF D

C

B E C Tìm tòi lời giải:

Để chứng minh tam giác DEF đều

Ta chứng minh DE = EF = FD Để từng cặp cạnh bằng nhau ta chứng minh tam giác hai tam giác bằng nhau Chú ý tính chất tam giác đều Aˆ  Bˆ Cˆ= 600

AB = BC = CA

Giải tóm tắt:

Ta có: AB = AC

Hay AD + DB = AF + FC  BD = FA

Mà AD = CF

Tương tự BD = FA = CE

 ADF =  BED ( c-g-c)

 DE = ED ( 1)

 ADF = CFE ( c-g-c)

 DF = EF (2)

Từ (1) và (2)  DE = EF = FD

Vậy  DEF đều

Mở rộng: Ba đường trung tuyến trong tam giác đều

AD;BE;CF trung tuyến

KL AD = BE= EF F E

G

B C

D Tìm tòi lời giải: Để chứng minh AD = BE= EF

Ta chứng minh từng cặp bằng nhau AD = BE và BE = CF Chú ý trong tam giác đều ba đướng trung tuyến đồng thời là ba đường cao, ba đường phân giác

Giải tóm tắt:

ABD = BAE ( g-c-g)

nên AD = BE (1)

 ABE =  CAF ( g-c-g)

nên BE = CF (2)

từ (1) và (1) suy ra AD = BE= EF

( vì có GD = GE = GF trọng tâm tam giác đều cách đều ba cạnh; GA=GB=GC trọng tâm tam giác đều cách đều ba đỉnh)

Trang 9

4.7/ Hai đoạn thẳng đó là hai đường xiên hay hình chiếu của hai đường xiên:

Định lí 2: Trang 59 tập 2 A

GT BH; CH là các hình chiếu của

đường xiên BA, CA

BA = CA; ( hoặcBH = CH)

KL BH = CH ; (hoặc BA = CA) B H C

Tìm tòi lời giải: Để chứng minh BH = CH ( hay BA = CA ) ta đưa

hai đoạn thẳng này vào hai tam giác và chứng minh hai tam giác này bằng nhau Chú ý: đây là trường hợp đặc biệt của tam giác vuông

Giải tóm tắt:

a) xét ABH và ACH vuông tại H

AB = AC ( cạnh huyền)

AH: cạnh góc vuông chung

Nên  ABH = ACH ( cạnh huyền và cạnh góc vuông)

 BH = CH (cặp cạnh tương ứng )

b) Ta có:  ABH = ACH( c-g-c)

 BA = CA(cặp cạnh tương ứng )

Vậy trong số đường vuông góc và những đường xiên hạ từ một điểm đến một đường thẳng

- Nếu hai đường xiên bằng nhau thì các hình chiếu của chứng cũng bằng nhau

- Nếu hai đường xiên có hai đường chiếu bằng nhau thì hai đường xiên cũng bằng nhau

4.8/ Điểm nằm trên phân giác của góc cách đều hai cạnh của góc Phân giác của tam giác cách đều ba cạnh:

Bài tập 41 trang 46 sbt 2 A

GT ABC: CK, BK lần lượt

là phân giác ngoài C ˆ ˆ , B B E C

`KL AK là phân giác BÂC F

Tìm tòi lời giải: D

AK là phân giác BÂK

Thì DK = DF, mà DK; CK

là phân giác của hai góc ngoài

B và C nên KE = KF; KE = KD K

Ta trở lại chứng minh hai đoạn thẳng cùng bằng đoạn thẳng thứ ba

Chú ý: Một điểm nằm trên tia phân giác thì cách đều2cạnh của góc và ngược lại Giải tòm tắt:

Kẻ KD  AB; KE  BC; KF  AC

KD = KE ( K thuộc tia phân giácC ˆ B D)

KE = KF(K thuộc tia phân giác B ˆ C F)

 KD = KF

nên K thuộc tia phân giác BÂC hay đường phân giác trong của góc A cũng đi qua điểm K

Trang 10

Bài tập 29 trang 67 tập 2

GT Tam giác ABC đều

G là trọng tâm

KL GA = GB = GC (Tương tự mục 6)

4.9/ Phần phụ về các đoạn thẳng bằng nhau tổng số( hiệu số) nhiều đoạn thẳng:

N

GT M, N thuộc nửa mặt phẳng xy M

MK  xy

I là giao điểm xy và EN x K

KL IM + IN = EN

E

Tìm tòi lời giải:

Muốn chứng minh IM + IN = EN ta có thể chia EN thành hai đoạn rồi rồi chứng minh một đoạn bằng IM, một đoạn bằng IN

Giải tóm tắt: Vì I  xy mà xy là trung trực của EM nên:

IM = IE ( định lý)

Suy ra: IM + IN = IE + IN = EN

Tổng số nhiều đoạn thẳng không đổi Nếu phải chứng minh tổng số AB + BC không đổi thỉ tìm trong hình xem có một đoạn thẳng hoặc một tổng số đoạn thẳng nào không thay đổi rồi chứng minh AB+BC bằng đoạn thẳng đó hoặc bằng tổng số đoạn thẳng đó Muốn tìm một giá trị không đổi người ta xét trường hợp đặc biệt của hình, tương tự cho hiệu số đoạn thẳng cũng theo cách như vậy

Ví dụ: Bài tập 109 Sbt A

GT ABC cân

M thuộc BC H

ME  AC, MF || AB D

KL MD + ME không đổi B C

M Tìm tòi lời giải: nếu M trùng C thì khoảng cách từ C tới AB là CH, còn khoảng cách từ

AC là số không

Vậy tổng số những đoạn thẳng góc hạ từ C xuống các cạnh AB và AC bằng CH Phải chứng minh MD + ME = CH

Đem MD lên CH bằng cách vẽ MF||AB khi đó MD=HF(ghi thêm vào giả thiết)

Chỉ còn chứng minh ME = CF

 MCF = MCE

Giải tóm tắt: Kẻ MF|| AB Khi đó ta có :MD=HF (1)Vì MF||AB

Mà CF AB

Suy ra CF MF

Xét MFC và MEC ta có : 

=1v (*); (cùng bằng ) (**)

E

F ˆ  ˆ F Mˆ C E CˆM Bˆ

Ngày đăng: 12/03/2021, 23:08

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w