CHỨNG MINH HÌNH THOI Phương pháp 1: Sử dụng định nghĩa hình thoi Hình thoi là hình có hai cạnh kề bằng nhau. Phương pháp 2:. Sử dụng định lí về sự nhận dạng hình thoi. Định lí: Hình bình hành là hình thoi nếu: Có hai đường chéo vuông góc với nhau. Hoặc Có một đường chéo là đường phân giác của một góc. CHỨNG MINH HÌNH VUÔNG Phương pháp: Sử dụng định nghĩa của hình vuông Hình vuông là hình chữ nhật có hai cạnh kề bằng nhau Hình vuông là hình thoi có một góc vuông. CHỨNG MINH CÁC BẤT ĐẲNG THỨC Phương pháp 1: Sử dụng định lí về sự liên hệ giữa các cạnh trong một tam giác. Trong một tam giác, độ dài mỗi cạnh nhỏ hơn tổng và lớn hơn hiệu của hai cạnh kia. Hệ quả: Mọi đường gấp khúc dài hơn đoạn thẳng có chung hai đầu mút. Trong một tam giác vuông, cạnh huyền dài hơn cạnh góc vuông. Phương pháp 2: Sử dụng liên hệ giữa cạnh và góc trong tam giác. Trong một tam giác, đối diện với góc lớn hơn là cạnh lớn hơn. Phương pháp 3: Sử dụng liên hệ giữa đường vuông góc và đường xiên. Từ một điểm nằm ngoài một đường thẳng ta kẻ đường vuông góc và đường xiên đến đường thẳng thì: Đường vuông góc ngắn hơn mọi đường xiên. Hai đường xiên có hình chiếu bằng nhau thì bằng nhau và ngược lại. Đường xiên nào có hình chiếu lớn hơn thì lớn hơn và ngược lại. CHỨNG MINH CÁC BẤT ĐẲNG THỨC VỀ GÓC Phương pháp: Sử dụng các bất đẳng thức về góc trong tam giác. Trong một tam giác, mỗi góc ngoài đều lớn hơn các góc trong không kề với nó. Trong một tam giác, đối diện với cạnh lớn hơn là góc lớn hơn. 2. Chú trọng việc rèn cho học sinh kĩ năng tìm lời giải.
Trang 1CHỨNG MINH HÌNH THOI Phương pháp 1: Sử dụng định nghĩa hình thoi
- Hình thoi là hình có hai cạnh kề bằng nhau
Phương pháp 2: Sử dụng định lí về sự nhận dạng hình thoi.
Định lí: Hình bình hành là hình thoi nếu:
- Có hai đường chéo vuông góc với nhau Hoặc
- Có một đường chéo là đường phân giác của một góc.
CHỨNG MINH HÌNH VUÔNG Phương pháp: Sử dụng định nghĩa của hình vuông
- Hình vuông là hình chữ nhật có hai cạnh kề bằng nhau
- Hình vuông là hình thoi có một góc vuông
CHỨNG MINH CÁC BẤT ĐẲNG THỨC Phương pháp 1: Sử dụng định lí về sự liên hệ giữa các cạnh trong một tam
giác
- Trong một tam giác, độ dài mỗi cạnh nhỏ hơn tổng và lớn hơn hiệu của hai cạnh kia
- Hệ quả: Mọi đường gấp khúc dài hơn đoạn thẳng có chung hai đầu mút
- Trong một tam giác vuông, cạnh huyền dài hơn cạnh góc vuông
Phương pháp 2: Sử dụng liên hệ giữa cạnh và góc trong tam giác.
- Trong một tam giác, đối diện với góc lớn hơn là cạnh lớn hơn
Phương pháp 3: Sử dụng liên hệ giữa đường vuông góc và đường xiên.
Từ một điểm nằm ngoài một đường thẳng ta kẻ đường vuông góc và đường xiên đến đường thẳng thì:
- Đường vuông góc ngắn hơn mọi đường xiên
- Hai đường xiên có hình chiếu bằng nhau thì bằng nhau và ngược lại
- Đường xiên nào có hình chiếu lớn hơn thì lớn hơn và ngược lại
CHỨNG MINH CÁC BẤT ĐẲNG THỨC VỀ GÓC Phương pháp: Sử dụng các bất đẳng thức về góc trong tam giác.
- Trong một tam giác, mỗi góc ngoài đều lớn hơn các góc trong không kề với nó
- Trong một tam giác, đối diện với cạnh lớn hơn là góc lớn hơn
2 Chú trọng việc rèn cho học sinh kĩ năng tìm lời giải.
Trang 2Có thể nói rèn luyện giải toán cho học sinh là rèn cho học sinh hai kĩ năng: Tìm lời giải và trình bày lời giải Trong đó, kĩ năng tìm lời giải đóng một vai trò hết sức quan trọng Một học sinh yếu về khả năng tìm lời giải thì sẽ gặp khó khăn trong việc giải bài toán Hơn nữa, muốn tìm được nhiếu cách giải cho một bài toán thì đòi hỏi khả năng tìm lời giải của học sinh phải thật tốt
Nhưng tìm lời giải các bài toán bằng phương pháp nào? Có nhiều phương pháp tìm lời giải của bài toán Tuy nhiên, để phù hợp với đối tượng học sinh bậc THCS tôi chỉ trình bày hai phương pháp sau:
2.1 Phương pháp khai thác triệt để các giả thiết của bài toán.
a Nghiên cứu các đặc điểm của bài toán.
Đặc điểm của bài toán hình học thể hiện ở tính chất của hình, vị trí tương đối của các đường, dạng của các biểu thức… có trong bài toán
Ví dụ: : Cho hình bình hành ABCD Gọi E là trung điểm của AD, F là trung điểm của BC Chứng minh rằng: BE = DF ( Bài tập 44 trang 92/chương I,
Toán 8)
Nhận xét:
ABCD là hình bình hành ta nghĩ ngay đến:
AD = BC, AB = DC;
AD // BC, AB // DC;
DAB BCD ; ABC ADC� �
AC và BD cắt nhau tại trung điểm của mỗi đường
E là trung điểm của AD, F là trung điểm của BC ta nghĩ ngay đến:
AE = ED = BF = FC;
AE hay ED song song với BF hay FC
và nghĩ đến đường trung bình trong tam giác, trong hình thang
Từ những điều trên và từ các phương pháp chứng minh hai đoạn thẳng bằng nhau ta nghĩ đến một số cách giải sau:
Cách 1:
Trang 3ABCD là hình bình hành nên: AD = BC, AD//BC.
Mà: E là trung điểm của AD, F là trung điểm của BC nên ED = BF và ED//BF
Tứ giác DEBF có ED = BF và ED//BF nên là hình bình hành
Do đó: BE = DF
Cách 2:
ABCD là hình bình hành nên: AD = BC, AB = DC (1), DAB BCD� � (2) Vì AD = BC mà E là trung điểm của AD, F là trung điểm của BC nên AE = CF (3)
Từ (1),(2) và (3) suy ra: AEB = CFD (c-g-c)
Do đó: BE = DF
Cách 3:
Gọi I là trung điểm của BD, ta có: EI là đường trung bình của ADB
Nên
1
2
và EI // AB Tương tự ta có:
1 2
và FI // DC
Ngoài ra, AB = DC và AB // DC (Do ABCD là hình bình hành) nên EI =
FI và E, I, F thẳng hàng, hay I là trung điểm của EF
Tứ giác DEBF có BD cắt EF tại trung điểm của mỗi đường nên là hình bình hành Do đó: BE = DF
Cách 4:
Tứ giác ABCD là hình bình hành nên:
AD = BC và AB = DC
Suy ra: ADB = CBD(c-c-c)
Do đó: BE = DF
b Nghiên cứu các điều kiện đặt ra cho các đại lượng có trong bài toán để định hướng đường lối giải.
Ví dụ: Cho hình chữ nhật ABCD có AB = 2AD Gọi E, F theo thứ tự là trung
điểm của AB, CD Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE
a Tứ giác ADFE là hình gì? Vì sao?
b Tứ giác EMFN là hình gì? Vì sao?
Trang 4(Bài tập 85 trang 109/ chương I- Hình học 8)
Nhận xét:
Dự đoán hình tứ giác ADFE
Ta thấy đề bài cho hình chữ nhật ABCD như vậy trong tứ giác ADFE có các góc vuông , và do đó ADFE có thể là hình chữ nhật hoặc hình thang vuông hoặc hình vuông Hơn nữa, đề bài cho đẳng thức về độ dài đoạn thẳng (AB = 2AD) nên ta đoán ADFE là hình vuông
ABCD là hình chữ nhật ta nghĩ đến: DAB ADC 90� � 0.
E, F lần lượt là trung điểm của AB, DC ta nghĩ đến:
AB = 2AE, DC = 2DF và nghĩ đến đường trung bình của hình thang (Vì hình chữ nhật cũng là hình thang)
Và từ giả thiết AB = 2AD, dựa vào dấu hiệu nhận biết hình vuông ta có các cách giải câu a) như sau:
Cách 1:
ABCD là hình chữ nhật(1), nên AB = DC
Vì E là trung điểm của AB, F là trung điểm của DC nên:
AE AB DC DF
Ngoài ra AE // DF (do (1)) nên ADFE là hình bình hành
Mặt khác: DAE 90� 0(do(1)) và AD = AE = 12AB nên ADFE là hình vuông
Cách 2:
ABCD là hình chữ nhật (1) nên AB = DC, AD = BC, BC // AD
Trang 5Vì E là trung điểm của AB, F là trung điểm của DC nên EF là đường trung bình của hình thang ABCD ( BC // AD)
EF =
1
2(AD+BC) =
1
2.2AD = AD
Ta có: EF = AD = AE =
1
2AB =
1
2DC = DF nên ABFE là hình thoi
Mặt khác: DAE 90� 0 ( do (1) ) nên ADFE là hình vuông.
Cách 3:
ABCD là hình chữ nhật (1), nên BC // AD, AD AB, AD DC
Vì E là trung điểm của AB, F là trung điểm của DC nên EF là đường trung bình của hình thang ABCD (BC // AD) Do đó: EF // AD
Suy ra: EF AB Tứ giác ADFE có DAB ADC AEE 90� � � 0nên là
hình chữ nhật
Mặt khác: AD = AE =
1
2AB nên ADFE là hình vuông
2.2 Phương pháp phân tích.
Theo phương pháp này, chúng ta bắt đầu từ kết luận của bài toán, tìm các điều kiện cần phải có để dẫn tới kết luận đó
Ví dụ: Tứ giác ABCD có E, F, G, H theo thứ tự là trung điểm của các cạnh AB,
BC, CD, DA Tứ giác EEGH là hình gì? Vì sao?
(Bài tập 48 trang 93, chương I – Hình học 8)
Trang 6Phân tích:
Bằng trực giác ta dự đoán tứ giác EEGH là hình bình hành
1 Muốn có EFGH là hình bình hành, thì phải có một trong các điều kiện dưới đây:
a HF // GF và EH // HG;
b HE = GF và EF = HG;
c HE // GF và HE = GF hoặc EF // HG và EF = HG;
d HEF FHG� � và GHE EEG� �
e EG cắt HF tại trung điểm I của mỗi đường
2 Nếu lấy c, của 1) để có HE // GF và HE // GF chẳng hạn thì phải có một trong các điều kiện sau:
a HE và GF cùng song song và bằng một đoạn thẳng nào đó ( có thể là HE //
BD,
GF // BD và HE =
1
2BD, GF =
1
b HE và GF tạo với một đường thẳng nào đó một cặp góc so le trong bằng nhau hoặc cặp góc đồng vị bằng nhau,…
HE và GF là hai cạnh tương ứng của hai tam giác bằng nhau nào đó
3 Nếu lấy a) của 2, để có HE // BD, GF // BD và HE =
1
2BD, GF =
1
2BD thì cần có HE là đường trung bình của ABD, GF là đường trung bình của CBD
4 Muốn có HE là đường trung bình của ABD, GF là đường trung bình của CBD thì cần phải có E,F,G,H lần lượt là trung điểm của AB, BC, CD, DA
Đến đây ta thấy điều ta cần có thì trong đề bài đã cho Như vậy ta đã tìm ra được một đường lối để giải bài toán
Phần phân tích như trên ta có thể hướng dẫn học sinh ghi lại bằng sơ đồ như sau:
Trang 7
EFGH là hình bình hành
EH // GF EH = GF
HE // BD ; GF//BD; HE =
1
2BD; GF =
1
HE là đường trung bình của ADB GF là đường trung bình của CDB
E, H lần lượt là trung điểm của AB, DA F, G lần lượt là trung điểm của BC, DC
Khi phân tích ta thấy có rất nhiều lựa chọn Không phải lựa chọn nào cũng giúp ta tìm ra lời giải, nhưng rõ ràng với phương pháp phân tích này ta có thể tìm được rất nhiều lời giải cho một bài toán
Với bài toán trên ta còn có một số hướng giải như sau:
Tứ giáo ABCDC có
E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA
HE là đường trung GF là đường trung EF là đường trung HG là đường trung
bình của ABD bình của CBD bình của ABC bình của
ADC
HE // BD GF // BD FE // AC HG // AC
HE // GF ; FE // HG
EFGH là hình bình hành
Trang 8Trong giảng dạy, tuỳ theo từng bài tập, từng định lí mà tôi hướng dẫn học sinh tìm lời giải theo một phương pháp thích hợp
3 Dạy học sinh giải bài tập hình học bằng nhiều cách “sát đối tượng”
Tôi chia việc giải bài tập bằng nhiếu cách làm hai hình thức:
Hình thức chủ động, tức là học sinh vận dụng vốn kiến thức của mình chủ động đi tìm nhiều lời giải cho bài toán
Hình thức thụ động, tức là học sinh rèn luyện trình bày nhiều cách giải một bài toán mà trước đó giáo viên đã chỉ ra các đường lối giải
Trong giảng dạy, tuỳ theo đối tượng học sinh mà tôi có những yêu cầu khác nhau đối với các em
- Đối với đối tượng học sinh chưa khá, tôi chỉ yêu cầu học sinh giải ở hình thức thụ động Giáo viên chuẩn bị sẵn các bảng phụ, trong đó nêu tóm tắt các cách giải một bài toán và yêu cầu học sinh viết nhanh vào vở nháp để về trình bày lại vào vở bài tập
- Đối với học sinh khá giỏi, tôi khuyến khích các em chủ động tìm thêm những lời giải khác nhau khi giải một bài toán nào đó
Với thời gian chỉ 45 phút trên lớp, thì không thể nào vừa giải quyết hết lượng bài tập yêu cầu, mà còn giải bằng nhiều cách Theo tôi thì giáo viên nên hướng dẫn học sinh phân tích bài toán và ghi lời giải cụ thể cho một phương pháp( cách mà giáo viên dự tính là học sinh sẽ phát hiện ra sớm nhất), còn các cách khác giáo viên sẽ gợi ý cho học sinh để học sinh tự phát hiện ra, và dĩ nhiên những điều này giáo viên đã chuẩn bị ở bảng phụ, ghi sẵn sơ đồ phân tích đi lên kèm theoo một vài ý chính của phương pháp đó Sau đó yêu cầu học sinh có thể ghi vắn tắt vào giấy nháp rồi về nhà trình bày lại các cách đó với lời giải cụ thể vào vở bài tập
Ngoài ra, tôi tôi luôn tìm những bài toán tương đối dễ, những bài mà học sinh chưa khá có thể tự tìm thêm được những lời giải khác để khuyến khích các
em, giupa học sinh tự tin hơn khi làm quen với phương pháp giải bài tập hình học bằng nhiều cách
4 Dạy học sinh cách trình bày lời giải ( tổng hợp ) theo sơ đồ phần tích đi lên.
Để trình bày lời giải của bài toán sau khi đã tìm được hướng đi đối với học sinh là một vấn đề khó Nhiều học sinh hiểu được bài nhưng không biết trình bày bài toán như thế nào? Nhiệm vụ của giáo viên là giúp các em biết cách trình bày lại lời giải của bài toán sao cho khoa học, súc tích, ngắn gọn Từ kinh nghiệm giảng dạy, tôi thấy giáo viên nên tập cho học sinh trong quá trình phân tích bài toán tìm hướng đi, nên khi giải dưới dạng sơ đồ phân tích đi lên, sau khi
Trang 9tìm được đường đi đến kết quả học sinh chỉ việc dựa vào sơ đồ trình bày lại bài toán
Giáo viên hướng dẫn học sinh dựa vào sơ đồ đó để trình bày lời giải Ta có thể dùng các từ: vì, nên, do đó, mặt khác, mà, suy ra, … thay thế cho các dấu mũi tên, một cách thích hợp để kết hợp các ý đã phân tích từ dưới lên, viết thành lời giải hoàn chỉnh
Ví dụ: Qua sơ đồ phân tích tìm lời giải của bài 48 trang 93.
EFGH là hình bình hành
EH // GF EH = GF
HE // BD ; GF//BD; HE =
1
2BD; GF =
1
HE là đường trung bình của ADB GF là đường trung bình của
CDB
E, H lần lượt là trung điểm của AB, DA F, G lần lượt là trung điểm của BC, DC
Ta có thể trình bày lời giải bài toán này như sau:
Ta có: E, H lần lượt là trung điểm của AB, DA nên HE là đường trung bình của tam giác ADB
Suy ra: HE // BD; HE =
1
2BD (1)
Tương tự ta có: GF // BD; GF =
1
2BD (2) Từ (1) và (2), suy ra: HE // GF; HE = GF
Vậy EFGH là hình bình hành
Trang 10Sau một thời gian, khi đã rèn cho các em có kĩ năng dựa vào sơ đồ phân tích đi lên để trình bày bài toán thì giáo viên chỉ cần định hướng cho các em tự phân tích bài toán theo nhóm, giáo viên kiểm tra lại và cho các em nhận xét rồi yêu cầu học sinh tự trình bày lời giải
5 Kiểm tra việc thực hiện những công việc giáo viên đã giao cho học sinh.
Thường xuyên kiểm tra vở bài tập của học sinh, vở ghi chép các phương pháp chứng minh hình học để xem học sing có ghi chép, trình bày những cách giải mà giáo viên đã hướng dẫn ở lớp (đối với học sinh chưa khá), và kiểm tra việc tìm thêm những hướng giải khác (đối với học sinh khá giỏi)
Trang 11PHẦN III: KẾT LUẬN.
1 Kết quả.
Sau khi thực hiện đề tài này, tôi thấy nhiều em ưa thích học môn hình học hơn trước Trước đây tâm lí của các em có lẽ là sợ môn hình học, hay học hình học chỉ để đối phó với thầy cô và nhất là các em rất e ngại khi học tiết luyện tập giải bài tập hình, thì nay có thể các em tự tin hơn, ham thích học hình học hơn và có sự tiến bộ hơn rất nhiều
Kết quả kiểm tra 1 tiết cuối chương I – Hình học 8 đạt được như sau:
Như vậy, đã có 87/114 học sinh đạt điểm từ trung bình trở lên, chiếm tỉ lệ 76.3% So với đầu năm thì chỉ có 69/114 học sinh đạt từ trung bình trở lên, chiếm tỉ lệ 60.5%, kết quả này làm tôi rất phấn khởi
2 Bài học kinh nghiệm.
Qua những tiết học dạy cho học sinh theo từng bước giải bài tập hình học như trên, tôi thấy số học sinh tham gia xây dựng bài cho các tiết luyện tập hình học ngày càng nhiều, các em đã mạnh dạn trình bày suy nghĩ của mình khi tìm cách giải bài toán Từ những tiết học trên lớp có thêm sự hướng dẫ của giáo viên khi về nhà các em có thể tự tìm ra cách chứng minh những bài tập dễ tuỳ theo khả năng của các em, không còn thụ động như trước nữa
Hơn nữa tôi nhận thấy, sau khi áp dụng đề tài này vào giảng dạy thì một học rất hứng thú, say mê học hình học hơn trước, vì với nhiều cách giải áp dụng lí thuyết từ cơ bản đến nâng cao, từ cái vừa mới học đến những kiến thức từ trước đây sẽ giúp cho các em có cơ hội sẽ giúp ch các em có cơ hội để ôn lại kiến thức cũ rất nhiều Giải bài tập bằng nhiều cách sẽ đáp ứng cho nhiều đối tượng học sinh, học sinh chưa khá thì thích thú vì mình hiểu được bài và làm được bài tập, còn học sinh khá giỏi thì không bị nhàm chán, vì qua đó các em có điều kiện để ôn luyện lại kiến thức cũ và phát hiện ra có nhiều phương pháp, áp dụng những kiến thức nào để giải bài tập đó Sau đó, các em sẽ có được kinh nghiệm giải bài tập qua việc cập nhật các phương pháp giải các dạng toán hình học bằng nhiếu cách hằng ngày trên lớp