mục tiêu: - Kiến thức: Ôn tập cho HS công thức định nghĩa các tỉ số lợng giác của một góc nhọn và một số tính chất của các tỉ số lợng giác.. Ôn tập cho HS các hệ thức lợng trong tam giác
Trang 1Ngày soạn 5/12/2010 Ngày dạy 10/12/2010.
Tuần 18, Tiết 31 : ôn tập học kỳ I
A mục tiêu:
- Kiến thức: Ôn tập cho HS công thức định nghĩa các tỉ số lợng giác của một góc nhọn và một số tính chất của các tỉ số lợng giác Ôn tập cho HS các hệ thức lợng trong tam giác vuông, và kĩ năng tính đoạn thẳng, góc trong tam giác Ôn tập hệ thống hoá các kiến thức đã học về đờng tròn ở chơng II
- Kĩ năng : Rèn luyện kĩ năng vẽ hình phân tích bài toán, trình bày bài toán
- Thái độ : Rèn luyện tính cẩn thận cho HS
B Chuẩn bị của GV và HS:
- Giáo viên : Bảng phụ ghi câu hỏi, bài tập Thớc thẳng, com pa, ê ke, phấn màu, thớc đo độ, bảng phụ, máy tính bỏ túi
- Học sinh : Thứơc kẻ, com pa, ê ke, thớc đo độ, máy tính bỏ túi
C Tiến trình dạy học:
I- ổn định tổ chức : Kiểm tra sĩ số 9B /40
II Kiểm tra bài cũ: Kết hợp trong khi ôn tập
III Bài mới : tổ chức ôn tập
Hoạt động 1:ôn tập về tỉ số lợng giác của góc nhọn (10 phút)
- Nêu công thức định nghĩa các tỉ số
l-ợng giác của góc nhọn α
Bài 1: (Khoanh tròn chữ cái đứng trớc
kết quả đúng)
Cho ∆ABC có Â = 900 ; B = 300, kẻ
đ-ờng cao AH
C H
B
A
a) SinB bằng:
M AC AB N AH AB
HS: Sinα = d h tgα = k d cosα = h k cotgα = d k
B
- Bốn HS lên bảng xác định kết quả
đúng:
a) N sinB =
AB AH
Trang 2P
BC
AB
Q
3 1 b) tg300 bằng:
M
2
1
N 3
P 13 Q 1
c) CosC bằng:
M HC AC N AC AB
P
HC
AC
Q
2 3
d) cotgBAH bằng:
M
AH
BH
N
AB AH
P 3 Q AC AB
Bài 2: Trong các hệ thức sau, hệ thức
nào đúng, hệ thức nào sai ? (với góc α
nhọn)
a) Sin2α = 1 - cos2α
b) tgα = cossinαα
c) cosα = sin(1800 - α)
d) cotgα = tg1α
e) tgα < 1
g) cotgα = tg(900 - α)
h) khi α tăng thì cosα giảm
b) tg300 = 13 P
c) M CosC =
AC
HC
d) Q cotgBAH = AC AB
Bài 2:
a) Đúng
b) Sai
c) Sai
d) Đúng
e) Sai
g) Đúng
h) Đúng
Hoạt động 2: ôn tập các hệ thức trong tam giác vuông (13 ph)
- GV: Cho ∆ vuông ABC, đờng cao AH
(h vẽ) A
c h b
c' b'
B H C
Viết các hệ thức về cạnh và đờng cao
Bài 2:
- HS viết vào vở
- Một HS lên bảng viết
1) b2 = ab' ; c2 = a.c'
2) h2 = b'c'
3) ah = bc
4) 2 2 2
1 1 1
c b
5) a2 = b2 + c2
Trang 3trong tam giác.
- GV: Cho bài tập 3
Cho ∆ABC vuông tại A đờng cao
AH chia cạnh huyền BC thành 2 đoạn
BH, CH có độ dài lần lợt là 4 cm, 9 cm
Gọi D, E lần lợt là hình chiếu của H
trên AB và AC
a) Tính độ dài AB, AC
b) Tính độ dài DE, số đo B, C
Bài 3:
B
H
E F
a) BC = BH + HC = 4 + 9 = 13 (cm)
AB2 = BC BH = 13 4
⇒ AB = 13 4 = 2 13 (cm)
AC2 = BC HC = 13 9
⇒ AC = 13 9 = 3 13 (cm)
b) AH2 = BH HC = 4 9 = 36 (cm)
⇒ AH = 6 (cm)
Xét tứ giác ADHE có: Â = D = Ê = 900
⇒ Tứ giác ADHE là hcn
⇒ DE = AH = 6 cm
Trong ∆ vuông ABC SinB = = ≈
13
13
BC
⇒ àB ≈ 56019' ; àC ≈ 33041'
Hoạt động 3: ôn tập lí thuyết chơng II - đờng tròn (20 ph)
1 Sự xác định đờng tròn và các tính chất của
đờng tròn
- Định nghĩa
- Cách xác định đờng tròn
- Chỉ rõ trục đối xứng, tâm đối xứng
- Nêu quan hệ giữa đờng kính và dây
- Phát biểu các định lí về quan hệ vuông góc
giữa đờng kính và dây
- Phát biểu các định lí liên hệ giữa dây và
khoảng cách từ tâm đến dây
2 Vị trí tơng đối giữa đờng thẳng và đờng
tròn:
- Giữa đờng thẳng và đờng tròn: Nêu hệ thức
giữa d và R
- Thế nào là tiếp tuyến của đờng tròn
- HS trả lời:
Cách xác định: biết: + Tâm và bán kính + 1 đờng kính + 3 điểm phân biệt của đờng tròn
- HS trả lời
- HS nêu 3 vị trí tơng đối của đờng thẳng
và đờng tròn
1) Đờng thẳng cắt đờng tròn: d < R 2) đt tiếp xúc đờng tròn ⇒ d = R
3) đt không giao với đờng tròn: d > R
Trang 4- Phát biểu định lí 2 tiếp tuyến cắt nhau của
một đờng tròn
- Nêu dấu hiệu nhận biết
3 Vị trí tơng đối của hai đờng tròn:
- Yêu cầu HS nhắc lại các vị trí và hệ thức
t-ơng ứng giữa R và OO'
4 Đờng tròn và tam giác:
- Định nghĩa đờng tròn nội, ngoại tiếp tam
giác, tâm của các đờng tròn này ?
Bài số 4: Cho nửa đờng tròn tâm O đờng
kính AB Trên nửa mặt phẳng bờ AB chứa
nửa đờng tròn vẽ tiếp tuyến Ax với (O) C là
điểm bất kỳ trên nửa đờng tròn Phân giác
của ∠CAx cắt đờng tròn tại M và cắt tia BC
tại N
a/Chứng minh tam giác BAN cân
b/ Khi C di chuyển trên nửa đờng tròn thì N
di chuyển trên đờng nào?
TH : đt là tiếp tuyến của đờng tròn
- HS nêu 3 vị trí và các hệ thức
Bài 4:
a/Ta có ∠ xAN +∠ NAB = ∠xAB = 900 ( Ax là tiếp tuyến)
∠NAC + ∠ANB = 900
( Tam giác ANC vuông tại C)
∠xAN = ∠NAC ( AN là phân giác )
⇒ ∠NAB = ∠ANB
⇒ ∆ABN cân tại B b/ ta có ∆ABN cân tại B
⇒ BA = BN
Mà BA không đổi nên BN không đổi , B
cố định Vậy khi C di chuyển trên nửa đờng tròn
đờng kính AB thì N di chuyển trên đờng tròn (B; BA)
IV.Hớng dẫn về nhà (2 ph)
- Ôn tập kĩ lí thuyết để có cơ sở tốt làm bài tập
- Làm bài tập: 85, 86, 88 <141 SBT>
- Chuẩn bị kiểm tra học kì I
B O
a c
ó A
N x