Magnetically Coupled Circuits XIII.Frequency Response. XIV.The Laplace Transform XV.[r]
Trang 1Electric Circuit Theory
Electrical Circuit Analysis
Trang 2I Basic Elements Of Electrical Circuits
II Basic Laws
III Electrical Circuit Analysis
IV Circuit Theorems
V Active Circuits
VI Capacitor And Inductor
VII First Order Circuits
VIII.Second Order Circuits
IX Sinusoidal Steady State Analysis
X AC Power Analysis
XI Three-phase Circuits
XII Magnetically Coupled Circuits
XIII.Frequency Response
XIV.The Laplace Transform
XV Two-port Networks
Trang 3Electrical Circuit Analysis
1 Branch current method
2 Node voltage method
3 Mesh current method
Trang 4Branch current method (1)
R 1
R 2
R 3
R 4
E 1
E 2
J
–
–
i 1
i 2
i 3
i 4
+ v 1 – + v 3 –
+
v 2
–
c
+
v 4
–
Node a: i1 + i2 – i3 = 0
Node b: i3 – i4 + J = 0
Loop A: – E1 + R1i1 – R2i2 + E2 = 0
Loop B: – E + R i + R i + R i = 0
i1 + i2 – i3 = 0
i3 – i4 = –J
R1i1 – R2i2 = E1 – E2
R2i2 + R3i3 + R4i4 = E2
i1
i2
i3
i4
Ex 1
Trang 5Branch current method (2)
i1 + i2 – i3 = 0
i3 – i4 = –J
R1i1 – R2i2 = E1 – E2
R2i2 + R3i3 + R4i4 = E2
nKCL = n – 1
nKVL = b – n + 1
Ex 1 R 1
R 2
R 3
R 4
E 1
E 2
J
–
–
i 1
i 2
i 3
i 4
+ v 1 – + v 3 –
+
v 2
–
c
+
v 4
–
Trang 6Branch current method (3)
i1 + i2 – i3 = 0
i3 – i4 = –J
R1i1 – R2i2 = E1 – E2
R2i2 + R3i3 + R4i4 = E2
1 Find:
nKCL = n – 1, and
nKVL = b – n + 1
2 Apply KCL at nKCL nodes
3 Apply KVL at nKVL loops
4 Solve simultaneous equations
Ex 1 R 1
R 2
R 3
R 4
E 1
E 2
J
–
–
i 1
i 2
i 3
i 4
+ v 1 – + v 3 –
+
v 2
–
c
+
v 4
–
Trang 7Branch current method (4)
1 Find:
nKCL = n – 1, and
nKVL = b – n + 1
2 Apply KCL at nKCL nodes
3 Apply KVL at nKVL nodes
4 Solve simultaneous equations
nKCL = 4 – 1 = 3; nKVL = 6 – 4 + 1 = 3
A: R1i1 + R5i5 + R2i2 – E1 = 0
B: R3i3 + R5i5 – R4i4 = 0
C: R2i2 + R6i6 + R4i4 – E6 = 0
a: – i1 + i2 – i6 = 0
b: i1 – i5 + i3 + J = 0
c: – i3 – i4 + i6 – J = 0
C
Ex 2
+ –
–
R5
R6
E1
E6
i1
i2
i3 J
i4
i5
+
–
a
b
c
d
i6
+ –
Trang 8Branch current method (5)
A
B
C
2 3 6
4 3 5
i1
i5
i2
i6
i3
i4
1 4
1 1 5 5 4 4 1
:
3 3 6 6 5 5 3 6
:
6 6 2 2 6
:
R3
R4
R5
R6
E6
E3
d
a
b c
–
+
Ex 3
Trang 9Branch current method (6)
–
+ –
R1
E1
E3
i1
i2
i3
Ex 4
R1 = 10Ω, R2 = 20Ω, R3 = 15Ω, E1 = 30V,
E3 = 45V, J = 2A Find currents?
i + − + = i i J
1 1 2 2 1
R i − R i = E
2 2 3 3 3
R i + R i = E
1 2
2 3
2
20 15 45
i i i
i i
i i
i = ∆ i = ∆ i = ∆
10 20 0 ;
0 20 15
−
30 20 0 ;
45 20 15
10 30 0 ;
0 45 15
10 20 30
0 20 45
−
Trang 10Branch current method (7)
–
+ –
R1
E1
E3
i1
i2
i3
R1 = 10Ω, R2 = 20Ω, R3 = 15Ω, E1 = 30V,
E3 = 45V, J = 2A Find currents?
i + − + = i i J
1 1 2 2 1
R i − R i = E
2 2 3 3 3
R i + R i = E
1 2
2 3
2
20 15 45
i i i
i i
i i
10 20 0
0 20 15
−
20 15 20 15 20 0
−
1( 20 15 20 0) 10[1 15 20( 1)] 0[1 0 ( 20)( 1)]
Ex 4