1. Trang chủ
  2. » Địa lý lớp 12

đại số toán học 10 bùi công hùng thư viện giáo dục tỉnh quảng trị

153 16 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 153
Dung lượng 2,38 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

GV như ta đã biết để diễn tả hàm số nghịch biến ta dùng mũi tên biểu diên đi xuống và để diễn tả hàm số đồng biến ta dùng mũi tên biểu diễn đi lên.. Dựa vào bảng biến thiên ta có thể [r]

Trang 1

-HS biết thé nào là một mệnh đề, mệnh đề phủ định, mệnh đề chứa biến.

-Biết ký hiệu phổ biến và ký hiệu tồn tại

-Biết được mệnh đề kéo theo và mệnh đề tương đương

-Phân biệt được điều kiện cần và điều kiện đủ, giả thiết và luận

2 Về kỹ năng:

- Biết lấy ví dụ về mệnh đề, mệnh đề phủ định của một mệng đề, xác định được tính đúng sai của một mệnh đề trong những trường hợp đơn giản

- Nêu được mệnh đề kéo theo và mệnh đề tương đương

- Biết lập được mệnh đề đảo của một mệnh đề cho trước

3 Về tư duy: Phát triển tư duy trừu tượng, tư duy khái quát hóa, tư duy lôgic,…

4 Về thái độ: Học sinh có thái độ nghiêm túc, say mê trong học tập, biết quan sát và phán

đoán chính xác

B Chuẩn bị của GV và HS:

GV: Giáo án, phiếu học tập, câu hỏi trắc nghiệm, …

HS: Đọc và soạn bài trước khi đến lớp, bảng phụ,…

C Tiến trình bài học và các hoạt động:

I Ổn định lớp: Chia lớp thành 6 nhóm

II Bài mới:

TH1.Qua ví dụ nhận biết khái niệm

HĐ1:

GV: Nhìn vào hai bức tranh (SGK trang 4),

hãy đọc và so sánh các câu bên trái và các

câu bên phải

Xét tính đúng, sai ở bức tranh bên trái

Bức tranh bên phải các câu có cho ta tính

Các câu bên trái là những mệnh đề

GV: Các câu bên phải không thể cho ta tính

đúng hay sai và những câu này không là

những mệnh đề

GV: Vậy mệnh đề là gì?

I MỆNH ĐỀ MỆNH ĐỀ CHỨA BIẾN: 1.Mệnh đề:

Mỗi mệnh đề phải hoặc đúng hoặc sai.Một mệnh đề không thể vừa đúng, vừa sai

TiÕt

1

Trang 2

GV: Phát phiếu học tập 1 cho các nhóm và

yêu cầu các nhóm thảo luận đề tìm lời giải

GV: Gọi HS đại diện nhóm 1 trình bày lời

giải

GV: Gọi HS nhóm 2 nhận xét và bổ sung

thiếu sót (nếu có)

GV: Nêu chú ý:

Các câu hỏi, câu cảm thán không là mệnh đề

vì nó không khẳng định được tính đúng sai

nào là mệnh đề, câu nào không phải là mệnh đề? Nếu là mệnh đề thì hãy xét tính đúng sai

a)Hôm nay trời lạnh quá!

b)Hà Nội là thủ đô của Việt Nam

c)3 chia hết 6;

d)Tổng 3 góc của một tam giác không bằng

1800;e)Lan đã ăn cơm chưa?

HĐ 2: Hình thành mệnh đề chứa biến thông

qua các ví dụ

GV: Lấy ví dụ và yêu cầu HS suy nghĩ và trả

lời

GV: Với câu 1, nếu ta thay n bởi một số

nguyên thì câu 1 có là mệnh đề không?

GV: Hãy tìm hai giá trị nguyên của n để

GV: Nếu ta ký hiệu P là mệnh đề Minh nói

Mệnh đề Hùng nói “không phải P” gọi là

mệnh đề phủ định của P, ký hiệu:

GV: Để phủ định một mệnh đề, ta thêm

(hoặc bớt) từ “không” (hoặc từ “không

phải”) vảotước vị ngữ của mệnh đề đó

GV: Chỉ ra mối liên hệ của hai mệnh đề P và

Hùng nói: “2003 không phải số nguyên tố”

Bài tập: Hãy phủ định các mệnh đề sau:P: “ là số hữu tỉ”

Q:”Hiệu hai cạnh của một tam giác nhỏ hơncạnh thứ ba”

Xét tính đúng sai của các mệnh đề trên và mệnh đề phủ định của chúng

II Mệnh đề kéo theo

*Mệnh đề “Nếu P thì Q” được gọi là mệnh đề kéo theo, ký hiệu:

Trang 3

GV: Mệnh đề còn được phát biểu là:

“P kéo theo Q” hoặc “Từ P suy ra Q”

GV: Nêu ví dụ và gọi một HS nhóm 6 nêu

P là giả thiếu,Q là kết luận của định lí, hoặc

P là điều kiện đủ để có Q hoặc

Q là điều kiện cần để có P

GV: Phát phiếu HT 2 và yêu cầu HS các

nhóm thảo luận tìm lời giả

GV: Gọi HS đại diện nhóm 3 trình bày lời

GV: Lấy ví dụ minh họa đối với những định

lí không phát biểu dưới dạng “Nếu …thì

….”

Ví dụ: Từ các mệnh đề:

P: “ABC là tam giác đều”

Q: “Tam giác ABC có ba đường cao bằng nhau”

Hãy phát biểu mệnh đề và xét tính đúng sai của mệnh đề

*Mệnh đề PQ chỉ sai khi P đúng và Q

sai.

*Nếu P đúng và Q đúng thì PQ đúng.

*Nếu Pđúng và Q sai thì PQ sai.

Định lý toán học thường có dạng: “Nếu P thì Q”

P: Giả thiết, Q; Kết luậnHoặc P là điều kiện đủ để có Q, Q là điều kiện cần để có P

*Phiếu HT 2:

Nội dung;

Cho tam giác ABC Từ mệnh đề:

P:”ABC là tram giác cân có một góc bằng

600”Q: “ABC là một tam giác đều”

Hãy phát biểu định lí Nêu giả thiếu,

kết luận và phát biểu định lí này dưới dạng điêù kiện cần, điều kiện đủ

GV: Nêu vấn đề bằng các ví dụ; giải quyết

vấn đề qua các hoạt động:

GV: Phát phiếu HT [?7 ] và cho HS thảo

luận để tìm lời giải theo nhóm sau đó gọi HS

đại diện 1 nhóm trình bày lời giải

GV: Hình thành khái niệm hai mệnh đề

IV Mệnh đề đảo – Hai mệnh đề tương đương:

Trang 4

GV: Cho HS nghiên cứu ở SGK và hãy cho

biết hai mệnh đề P và Q tương đương với

nhau khi nào?

GV: Nêu ký hiệu hai mệnh đề tương đương

GV: Nêu ví dụ hoặc cho HS nêu ví dụ

GV: Dùng ký hiệu và để viết các mệnh

đề và ngược lại thông qua các ví dụ:

GV: Yêu cầu HS xem ví dụ 6 SGK trang 7

và xem cách viết gọn của nó

GV: Ngược lại, nếu ta có một mệnh đề viết

dưới dạng ký hiệu thì ta cũng có thể phát

biểu thành lời

GV: Lấy ví dụ áp dụng và yêu cầu HS phát

biểu thành lời mệnh đề

GV:Gọi HS nhận xét và bổ sung (nếu cần)

GV: Gọi 1 HS đọc nội dung ví dụ 7 SGK và

yêu cầu HS cả lớp xem cách dùng ký hiệu

GV: Gọi HS nhận xét và bổ sung (nếu cần)

GV: Phát phiếu HT 2 và cho HS thảo luận

theo nhóm để tìm lời giải sau đó gọi một HS

đại diện nhóm 2 trình bày lời giải

GV: Gọi HS nhận xét và bổ sung (nếu cần)

rồi cho điểm HS theo nhóm

- Mệnh đề đảo của một mệnh đề không nhấtthiết là đúng

Nếu cả hai mệnh đề đều

đúng ta nói P và Q là hai mệnh đề tương đương.

Kí hiệu: P Q, đọc là :+P tương đương Q;

+P là điều kiện cần và đủ để có Q, hoặc P khi và chỉ khi Q, …

V Kí hiệu và :

Ví dụ: Bình phương mọi số nguyên đều lớn

hơn hoặc bằng không

Đây là một mệnh đề đúng

* Ký hiệu đọc là “ với mọi”

*Phiếu HT 2:

Nội dung: Cho mệnh đề:

P:”Mọi số nhân với 1 đều bằng 0”

Q: “Có một số cộng với 1 bằng 0”

a)Hãy phát biểu mệnh đề phủ định của các mệnh đề trên

b) Dùng ký hiệu để viết mệnh đề P, Q vàcác mệnh đề phủ định của nó Cho biết các mệnh đề đó, mệnh đề nào đúng, mệnh đề nào sai?

IV Củng cố: BÀI TẬP TRẮC NGHIỆM

Câu 1 Xét tính đúng – sai của các mệnh đề sau:

Trang 5

Câu 2.Cho mệnh đề P:

Mệnh đề phủ định của mệnh đề P là:

Hãy chon kết quả đúng

Câu 3.Cho mệnh đề P: “ là số nguyên tố”

1.Về kiến thức: Nắm được kiến thức cơ bản của: Mệnh đề, mệnh đề phủ định, mệnh

đề chứa biến, mệnh đề kéo theo và mệnh đề tương đương

2.Về kỹ năng:

Biết áp dụng kiến thức cơ bản đã học vào giải toán, xét được tính đúng sai của mệnh đề, suy ra được mệnh đề đảo, mệnh đề phủ định của một mệnh đề, phát biểu được mệnh đề dưới dạng điều kiện cần, điều kiện đủ, điều kiện cần và đủ, sử dụng các ký hiệu để viết các mệnh đề và ngựoc lại

3.Về tư duy và thái độ: Tích cực hoạt động, trả lời các câu hỏi Biết quan sát phán

đoán chính xác

B.Chuẩn bị:

1.Giáo Viên: sgk, sgv, giáo án, phiếu học tập.

2.Học Sinh: sgk, thước, bút long, Ôn tập kiến thức và làm bài tập trước ở nhà

Trang 6

Như thế nào được gọi mệnh đề kéo theo, mệnh đề tương đương? Cho ví dụ.

III Bài mới:

1 Đặt vấn đề: Vận dụng kiến thức đã học hôm nay ta LUYỆN TẬP 2.Triển khai bài

Hoạt động của GV và HS Nội dung ghi bảng

trao đổi và trả lời các câu hỏi sau:

HS : Trao đổi để đưa ra câu hỏi

1.Mệnh đề phải hoặc đúng hoặc sai

Mệnh đề không thể vừa đúng, vừa sai

2.Với mỗi giá trị của biến thuộc một tập hợp nào đó, mệnh đề chứa biến trở trành một mệnh đề

3.Mệnh đề phủ định của mệnh đề P là đúng khi P sai và sai khi P đúng

4.Mệnh đề sai khi Pđúng và Q sai (trong mọi trường hợp khác đúng)5.Mệnh đề đảo của mệnh đề là 6.Hai mệnh đề P và Q tương đương nếu hai Mệnh đề và đều đúng

II Bài tập

Câu 1: Trong các câu sau, câu nào là mệnh đề, câu

nào là mệnh đề chứa biến?

Giải:

1.a)Là mệnh đề; b)Là mđ chứa biến; c)là mệnh đề

chứa biến; d) Là mệnh đề

2.a)”1794 chia hết cho 3” là mệnh đề đúng; mệnh

đề phủ định là:”1794 không chia hết cho 3”;

b)” là một số hữu tỉ” là mệnh đề sai; mệnh đề phủ định:

” không là một số hữu tỉ” ;c)” là mệnh đề đúng; mệnh đề phủ định là:”

.d)” ”là mệnh đề sai; mệnh đề phủ định là:”

Trang 7

-Các dạng bài tập cần quan tâm?

HĐTP1: (Bài tập về mệnh đề kéo

theo và mệnh đề đảo)

GV: Yêu cầu các nhóm thảo luận

vào báo cáo

Mời HS đại diện nhóm 3 nêu kết

Yêu cầu các nhóm thảo luận và cử

đại diện báo cáo kết quả

GV: Ghi kết quả của các nhóm trên

bảng và cho nhận xét

GV chiếu Slide 10 về lời giải đúng

-Nếu a và b cùng chia hết cho c thì a + b chia hết cho c (a, b, c là những số nguyên)

-Các số nguyên có tận cùng bằng 0 đều chia hết cho5

-Tam giác cân có hai trung tuyến bằng nhau

-Hai tam giác bằng nhau có diện tích bằng nhau.a)Hãy phát biểu mệnh đề đảo của mỗi mệnh đề trên.b)Phát biểu mệnh đề trên, bằng cách sử dụng khái niệm”điều kiện cần”, “điều kiện đủ”

-Điều kiện đủ để một số chia hết cho 5 là số đó tận cùng bằng 0

-Điều kiện đủ để một tam giác có hai đường trung tuyến bằng nhau là tam giác đó cân

-Điều kiện đủ để hai tam giác có diện tích bằng nhau là chúng bằng nhau

* -Điều kiện cần để a và b chia hết cho c là a + b chia hết cho c

IV Củng cố: - Xem lại và học lý thuyết theo SGK.

-Làm các bài tập đã hướng dẫn và gợi ý

-Đọc và soạn trước bài mới: Tập hợp

Trang 8

Vận dụng được các khái niệm tập hợp con, hai tập hợp bằng nhau vào giải bài tập.

3.Về tư duy và thái độ: Tích cực hoạt động, trả lời các câu hỏi Biết quan sát phán

đoán chính xác, biết quy lạ về quen

B.Chuẩn bị:

1.Giáo Viên: sgk, sgv, giáo án, phiếu học tập.

2.Học Sinh: sgk, thước, bút long, chuẩn bị bảng phụ để thảo luận nhóm,….

C.Tiến trình lên lớp:

I Ổn định lớp: Nắm sỉ số

II Kiểm tra bài củ: (lòng vào bài mới)

III Bài mới:

1 Đặt vấn đề: Ta đã được học và làm quen tập hợp ở chương trình THCS?

Vậy tập hợp được xác định như thế nào? Để hiểu rỏ vấn đề đó, hôm nay ta đi

nghiên cứu bài mới: TẬP HỢP.

2.Triển khai bài:

Hoạt động của GV và HS Nội dung ghi bảng

HĐ1: (khái niệm tập hợp)

(Hình thành khái niệm tập hợp và phần

tử của tập hợp)

GV: Hãy xem nội dung HĐ1 ở SGK và

giải các câu đó theo yêu cầu đề ra

Gọi một HS lên bảng trình bày lời giải

Gọi HS nhận xét và bổ sung (nếu cần)

GV nêu lời giải đúng

-GV yêu cầu HS xem nội dung HĐ2

trong SGK và suy nghĩ trả lời

GV gọi HS nhận xét, bổ sung (nếu cần)

và cho điểm

GV nêu cách xác định tập hợp và lấy ví

dụ minh họa

Để củng cố khắc sâu GV yêu cầu các em

HS xem nội dung HĐ3 trong SGK và

tử của tập hợp đó

Để biểu diễn một tập hợp như đã biết làdùng 2 dấu móc nhọn

[3]

Trang 9

.a .b c z

.a x

còn biểu diễn tập hợp bằng cách sử dụng

biểu đồ Ven (GV lấy ví dụ minh họa)

GV đưa ra câu hỏi: Thế nào là tập hợp

Vậy với phương trình x2+x+1 =0 vô

nghiệm Tập A không có phần tử nào 

Một tập hợp không có phần tử nào được

Ví dụ: Tập hợp A gồmcác số tự nhiên nhỏ hơn 5

Biểu diễn bằng biểu đồ Ven:

HĐ 2: (Tập hợp con)

(Củng cố lại kiến thức tập hợp con)

GV cho HS xem nội dung HĐ5 trong

SGK và suy nghĩ trả lời

GV nêu khái niệm tập hợp con của một

tập hợp và viết tóm tắt lên bảng

GV Nhìn vào hình vẽ hãy cho biết tập M

có là tập con của tập N không? Vì sao?

GV giải thích và ghi ký hiệu lên bảng

Từ khái niệm tập hợp con ta có các tính

chất sau đây (GV yêu cầu HS xem tính

chất ở SGK)

II.Tập hợp con:

[5] B A

Các phần tử của tập hợp B đều thuộc tập hợp A thìtập B là tập con của tập A

Tập B con tập A

ký hiệu: (đọc là A chứa B)Hay (đọc là A bao hàm B)

N

M

Tập M không là tập con của N ta viết:

(đọc là M không chứa trong N)

*Các tính chất: (xem SGK)

HĐ3: (Hai tập hợp bằng nhau) (Hình

thành khái niệm hai tập hợp bằng nhau)

GV yêu cầu HS xem nội dung HĐ6

trong SGK và suy nghĩ trình bày lời giải

Ta nói, hai tập hợp A và B trong HĐ 6

bằng nhau Vậy thế nào là hai tập hợp

A=B

IV Củng cố: Treo bảng phụ cho HS làm bài tập trắc nghiệm.

x

.c .t d v

Trang 10

Câu 1 Kí hiệu L là tập hợp các học sinh của lớp 10a, T1 làtập hợp các học sinh thuộc tổ 1 lớp 10A Minh là một học sinhthuộc tổ 1 Xét tính đúng sai của các câu sau: a T1 L ;

b T1 L ; c Minh L ;

d Minh L ; e Minh T1

Câu 2 Xác định các tập hợp sau đây bằng cách chỉ ra tính

chất đặc trưng cho các phần tử của nó

Câu 3 Liệt kê các phần tử của tập hợp sau :

c C = { 3 và 3 < x 21};

d D = Tập các ước chung của 20 và 45 ;

Câu 4 Trong hai tập hợp A, B dưới đây, tập hợp nào là tập

con của tập hợp còn lại ?

a A là tập hợp các hình bình hành B là tập hợp các hình chữ nhật

b A là tập hợp các hình tam giác B là tập hợp các hình tứ giác

c A là tập hợp các tam giác cân B là tập hợp các tam giác đều

tỏ rằng B A

ước của 6} Chứng tỏ rằng A B

Câu 7 Cho hai tập hợp A = { | n chia hết cho 4 và 6} và B = { | n chia hết cho 12} Chứng tỏ rằng A = B

V Hướng dẫn học ở nhà:

-Xem và học lý thuyết theo SGK

- Làm lại các bài tập 1, 2 và 3 SGK trang 13;

-Soạn trước bài: Các phép tốn tập hợp

Trang 11

2 Học Sinh: sgk, thước, bút long.

III Bài mới:

1 Đặt vấn đề: Cách tìm ước chung của 12 và 18 ta gọi là giao của hai tập hợp Ư(12) và Ư(18) Để hiểu rỏ phép toán này hôm nay ta đi nghiên cứu bài mới:

CÁC PHÉP TOÁN TẬP HỢP

2 Triển khai bài:

GV: Cho HS làm [?1] theo nhóm.

HS: Hoạt động nhóm

GV: C được gọi là giao của hai tập hợp GV

gọi HS phát biểu định nghĩa và GV giới thiệu

kí hiệu.

GV: Giới thiệu biểu đồ ven để minh hoạ

GV: Cho HS làm ví dụ theo nhóm.

HS: Hoạt động nhóm

GV: C được gọi là hợp của hai tập hợp GV

gọi HS phát biểu định nghĩa và GV giới thiệu

GV: C được gọi là hiệu của hai tập hợp GV

gọi HS phát biểu định nghĩa và GV giới thiệu

Trang 12

GV: Cho HS làm [?3 ].

GV: Giới thiệu biểu đồ ven để minh hoạ

GV: Dùng biểu đồ ven giới thiệu phần bù

GV: Cho HS làm bài tập 1 sgk

III. Hiệu và phần bù của hai tập hợp   :

Ví dụ   :

A = { 1, 2, 3, 4, 6, 12 }

B = { 1, 2, 3, 6, 9, 18 } Gọi C là tập hợp gồm các phần tử của A

mà không thuộc B Hãy xác định tập hợp C.

- Xem và học lý thuyết theo SGK.

- Xem lại các bài tập đã giải và giải lại các bài tập đã hướng dẫn.

-Đọc và soạn trước bài các tập hợp số.

Trang 13

1 Giáo Viên: giáo án, SGK, bảng phụ

Hoạt động của GV và HS Nội dung ghi bảng

GV: - Gọi 2 hs lên bảng thực hiện BT1

và BT2

- Liệt kê các phần tử của A và B

- Hãy thực hiện các phép toán theo yêu

cầu của SGK

HS: - Hs làm bài theo yêu cầu của GV

- Hs làm theo sự gợi ý, hướng dẫn của

b) Số hs chưa được xếp HL giỏi và chưađược xếp HK tốt là

- Các khái niệm khoảng, đoạn, nửa đoạn

- Có kỉ năng tìm hợp, giao, hiệu của các khoảng, đoạn, nửa đoạn và biểu diễn chúng trên trục số

B.Chuẩn bị:

1.Giáo Viên: sgk, sgv, giáo án, phiếu học tập.

2.Học Sinh: sgk, thước, bút long.

Tiết: 6

Trang 14

C.Tiến trình lên lớp:

I Ổn định lớp: Nắm sỉ số

II Kiểm tra bài củ:

Như thế nào được gọi là phần bù của hai tập hợp? Tìm phần bù của tập hợp các số tự nhiên trong tập hợp các số nguyên

III Bài mới:

1 Đặt vấn đề: Ta đã được học những tập hợp số nào?(HS trả lời) Trên tập

hợp R còn có những tập hợp con khác Để hiểu rỏ vấn đề đó, hôm nay ta đi

nghiên cứu bài mới: CÁC TẬP HỢP SỐ 2.Triển khai bài:

Hoạt động của GV và HS Nội dung ghi bảng

GV: Nêu các câu hỏi để HS nhớ và

GV: Nếu hai phân số cùng biểu

diễn một số hữu tỉ khi và chỉ khi nào?

HS:Hai phân số cùng biễu diễn

một số hữu tỉ khi và chỉ khi ad = b.c

- Tập hợp các số không biểu được dưới

dạng số thập phân hữu hạn hay vô hạn

tuần hoàn, tức là các số biểu diễn được

dưới dạng số thập phân vô hạn không

tuần hoàn được gọi là tập hợp gì? Ký

hiệu?

HS: Tập hợp các số biễu diễn dưới

dạng số thập phân vô hạn không tuần

hoàn được gọi là tập hợp các số vô tỷ,

ký hiệu I.

-Tập hợp số thực? Ký hiệu?

HS: -Tập hợp số thực là gồm tất cả

các số hữu tỷ và vô tỷ, ký hiệu:

-Vẽ biểu đồ minh họa bao hàm các tập

3)Tập hợp các số hữu tỉ Q:

4)Tập hợp các số thực :

*Ta có bao hàm thức:

Trang 15

GV: Nêu các tập con của tập hợp các

số thực: đoạn khoảng, nửa khoảng

(GV nêu và biểu diễn các tập con đó

trên trục số)

GV: Yêu cầu HS xem nội dung bài tập

1 trong SGK và cho HS thảo luận tìm

lời giải GV gọi 4 HS đại diện 4 nhóm

lên bảng trình bày lời giải

GV: Gọi HS nhận xét, bổ sung (nếu

cần)

GV: Nêu lời giải chính xác

GV: Yêu cầu HS xem nội dung bài tập

2 trong SGK và cho HS thảo luận tìm

lời giải GV gọi HS đại diện nhóm 5

và 6 lên bảng trình bày lời giải bài tập

a) c)

GV: Gọi HS nhận xét, bổ sung (nếu

cần)

GV: Nêu lời giải chính xác

II.Các tập hợp con thường dùng của : (Xem SGK)

*Bài tập 1: Xác định các tập hợp sau và

biểu diễn chúg trên trục số:

a)[-3; 1) (0; 4]; Kq: [-3; 4]; b)(0; 2] [-1; 1); Kq: [-1; 2] c)(-2; 15) (3;+∞); Kq: (-2; +∞);

d) Kq: [-1; 2)

*Bài tập 2: (SGK trang 18)

a)[-1; 3];

c)

IV Củng cố: - Xem lại và học lý thuyết theo SGK.

- GV yêu cầu HS xem nội dung bài tập 3 trong SGK

- GV hướng dẫn và trình bày lời giải bài tập 3a) và 3c) và yêu cầu HS

về nhà làm các bài tập còn lại.

V Hướng dẫn học ở nhà:

- Xem và học lý thuyết theo SGK.

- Xem lại các bài tập đã giải và giải lại các bài tập đã hướng dẫn.

-Đọc và soạn trước bài Số gần đúng Sai số.

Ngày soạn:

Bài 5: SỐ GẦN ĐÚNG, SAI SỐ

A Mục tiêu: Qua bài học HS cần:

1)Về kiến thức: Nhận thức được tầm quan trọng của số gần đúng , ý nghĩa của số gần

đúng Nắm được thế nào là sai số tuyệt đối, thế nào là sai số tương đối, độ chính xác của

số gần đúng

2)Về kĩ năng : Biết tính các sai số, biết cách quy tròn.

3)Về tư duy và thái độ: Tích cực hoạt động, trả lời các câu hỏi Biết quan sát phán

đoán chính xác, biết quy lạ về quen

B.Chuẩn bị:

1.Giáo Viên: sgk, sgv, giáo án, phiếu học tập.

2.Học Sinh: sgk, thước, bút long.

C.Tiến trình lên lớp:

I Ổn định lớp: Nắm sỉ số

II Kiểm tra bài củ:

Tiết: 7

Trang 16

Như thế nào được gọi là phần bù của hai tập hợp? Tìm phần bù của tập hợp các số tự nhiên trong tập hợp các số nguyên.

III Bài mới:

1 Đặt vấn đề: Gọi học sinh lên đo chiều dài cái bảng, có thước dây 5mét

Sau khi đo gọi học sinh đọc kết quả Và các kết quả đó là giá trị gần đúng của chiều dài cái bảng Do vậy tiết này chúng ta nghiên cứu số gần đúng và sai số

2.Triển khai bài:

Hoạt động của GV và HS Nội dung ghi bảng

Hoạt động 1( ):

GV: Các em xem nội dung ví dụ 1 trong

SGK , có nhận xét gì về kết quả trên

GV: Phân tích và nêu cách tính diện tích

của Nam và Minh

GV: Yêu cầu HS xem nội dung HĐ 1

trong SGK

Có nhận xét gì về các số liệu nói trên ?

Hoạt động 2( ):

GV: Trong quá trình tính toán và đo đạc

thường khi ta được kết quả gần đúng Sự

chênh lệch giữa số gần đúng và số đúng

dẫn đến khái niệm sai số

Trong sai số ta có sai số tuyệt đối và sai số

tương đối

Gọi HS đọc đ/n sai số tuyệt đối

GV: Trên thực tế, nhiều khi ta không biết

nên không thể tính được chính xác ,

mà ta có thể đánh giá không vượt quá

Kết quả đo chiều cao một ngôi nhà được

ghi là 15,5m 0,1m có nghĩa như thế nào ?

=

d > 0 dVd1: =

a = 1,41 = = 0,01

d = a dd: độ chính xác của số gần đúng

Trang 17

GV: Trong hai phép đo của nhà thiên văn

và phép đo của Nam trong ví dụ (trang 21

SGK), phép đo nào có độ chính xác cao

hơn ?

Thoạt nhìn, ta thấy dường như phép đo

của Nam có độ chính xác cao hơn của các

nhà thiên văn

Để so sánh độ chính xác của hai phép đo

đạc hay tính toán, người ta đưa ra khái

niệm sai số tương đối

Trở lại vấn đề đã nêu ở trên hãy tính sai số

tương đối của các phép đo và so sánh độ

chính xác của phép đo

Hoạt động 3:

Đặt vấn đề về số quy tròn và nêu cách quy

tròn của một số gần đúng đến một hàng

nào đó Dựa vào cách quy tròn hãy quy

tròn các số sau Tính sai số tuyệt đối

a) 542,34 đến hàng chục

b)2007,456 đến hàng phần trăm

Cho học sinh làm nhóm trên bảng phụ

Chọn đại diện nhóm trình bày Lớp nhận

Củng cố( ): Sai số tuyệt đối, sai số

tương đối ở trên bảng và cách quy tròn của

nhận xét : càng bé thì độ chính xác của phép đo càng cao

III Số quy tròn:

1 Ôn tập quy tắc làm tròn số:

Nếu chữ số ngay sau hàng quy tròn nhỏ hơn 5 thì ta chỉ việc thay thế chữ số đó và các chữ số bên phải nó bởi 0

Nếu chữ số ngay sau hàng quy tròn lớn hơnhay bằng 5 thì ta thay thế chữ số đó và các chữ số bên phải nó bởi 0 và cộng thêm mộtđơn vị vào chữ số ở hàng quy tròn

2 Cách viết số quy tròn của số gần đúng căn cứ vào độ chính xác cho trước:

IV Củng cố: Học bài, làm bài tập 1 5 /23

- Xem và học lý thuyết theo SGK.

- Xem lại các bài tập đã giải và giải lại các bài tập đã hướng dẫn.

Trang 18

-Biết sử dụng các ký hiệu Biết phủ định các mệnh đề có chứa dấu và

- Xác định được hợp, giao, hiệu của hai tập hợp đã cho, đặc biệt khi chúng là các khoảng, đoạn

- Biết quy tròn số gần đúng

3) Về tư duy và thái độ:

-Tích cực hoạt động, trả lời các câu hỏi Biết quan sát phán đoán chính xác, biết quy lạ về quen

B.Chuẩn bị:

1.Giáo Viên: sgk, sgv, giáo án, phiếu học tập.

2.Học Sinh: sgk, thước, bút long.

C.Tiến trình lên lớp:

I Ổn định lớp: Nắm sỉ số,chia lớp thành 6 nhóm

II Kiểm tra bài củ:

III Bài mới: ÔN TẬP CHƯƠNG I.

Hoạt động của GV và HS Nội dung ghi bảng

HĐ1: (Ồn tập lại các khái niệm cơ bản

của chương)

GV gọi từng học sinh đứng tại chỗ hoặc

lên bảng trình bày lời giải từ bài tập 1 đến

bài tập 8 SGK

HS: Suy nghĩ và rút ra kết quả:

1 đúng khi A sai, và ngược lại

2 Mệnh đề đảo của là BA Nếu

đúng thì chưa chắc BA đúng

Ví dụ: “Số tự nhiên có tận cùng 0 thì chia

hết cho 5” là mệnh đề đúng Đảo lại: “Số

tự nhiên chia hết cho 5 thì cóa tận cùng 0”

là mệnh đề sai

1.Xác định tính đúng sai của mệnh đề phủ

định theo tính đúng sai của mệnh đề A

2.Thế nào là mệnh đề đảo của mệnh đề

? Nếu là mệnh đề đúng, thì mệnh đề đảo của nó có đúng không? Cho

ví dụ minh họa

3 Thế nào là hai mệnh đề tương đương?

4 Nêu định nghĩa tập hợp con của một tập

hợp và định nghĩa hai tập hợp bằng nhau

5 Nêu các định nghĩa hợp, giao, hiệu và Tiết: 8

Trang 19

Câu 6, 7, 8 HS suy nghĩ và tra lời tương

tự

GV: Gọi HS nhận xét, bổ sung (nếu cần)

GV: Nhận xét và nêu lời giải đúng…

phần bù của hai tập hợp Minh họa các khái niệm đó bằng hình vẽ

6 Nêu định nghĩa đoạn [a, b], khoảng

(a;b), nửa khoảng [a; b), (a;b], (-∞; b], [a; +∞) Viết tập hợp các số thực dưới dạng một khoảng

7 Thế nào là sai số thuyệt đối của một số

gầnđúng? Thế nào là độ chính xác của một

số gần đúng?

8 Cho tứ giác ABCD Xét tính đúng sai

của mệnh đề với a)P: “ABCD là một hình vuông”

GV : Gọi một HS nêu đề bài tập 9 SGK,

cho HS thảo luận suy nghĩ tìm lời giải và

gọi 1 HS đại diện trình bày lời giải

GV gọi HS nhận xét, bổ sung (nếu cần)

GV phân tích và nêu lời giải chính xác…

Bài tập 9: ( SGK)

HĐ3: (Phân tích và hướng dẫn các bài

tập còn lại trong SGK )

GV: Gọi HS nêu đề các bài tập trong SGK

(Trong mỗi bài tập GV giải nhanh tại lớp

hoặc có thể ghi lời giải hướng dẫn trên

- Xem và học lý thuyết theo SGK.

- Xem lại các bài tập đã giải và giải lại các bài tập đã hướng dẫn.

Trang 20

2)Về kỹ năng:

-Biết tìm tập xác định của các hàm số đơn giản

3) Về tư duy và thái độ:

-Tích cực hoạt động, trả lời các câu hỏi Biết quan sát phán đoán chính xác, biết quy lạ về quen

B.Chuẩn bị :

Hs : Nghiên cứu bài trước soạn các hoạt động, bảng phụ để làm nhóm

Gv: Giáo án, phiếu học tập( các câu hỏi của các hoạt động trong SGK)

C Tiến trình dạy học:

I Ổn định lớp, chia lớp thành 6 nhóm

II Kiểm tra bài củ:

III Bài mới:

1 Bài mới:

2 Triển khai bài: HÀM SỐ

Hoạt động của GV và HS Nội dung ghi bảng

HĐ1: ( Ôn tập về hàm số)

Vào bài: Giả sử ta có hai đại lượng

biến thiên x và y, trong đó x nhận giá

trị thuộc tập D Nếu với mỗi giá trị của

GV gọi một HS nêu ví dụ 1 trong

SGK, GV phân tích tương tự như trong

sách để chỉ ra biến số và hàm số

GV yêu cầu HS cả lớp xem nội dung

hoạt động 1 và suy nghĩ trả lời

được cho dưới dạng bảng

GV gọi một HS chỉ ra các giá trị của

Trang 21

GV yêu cầu HS các nhóm xem nội

dung hoạt động 3 và suy nghĩ trả lời

GV gọi HS đại diện các nhóm trình

bày lời giải của nhóm mình

GV nêu lời giải đúng

các số thực x sao cho biểu thức f(x) có

nghĩa (hay xác định) được gọi là tập

Biểu thức có nghĩa khi nào?

Từ điều kiện có nghĩa của biểu thức

GV gọi HS nhận xét, bổ sung (nếu cần)

GV nêu kết quả chính xác (nếu HS làm

sai)

GV cho HS xem chú ý trong SGK

GV yêu cầu HS suy nghĩ tính giá trị

cảu hàm số trong chú ý (như trong hoạt

động 6)

c)Hàm số cho bằng công thức:

Các hàm số y =ax + b, b = ax2, y= ,… là những hàm số được cho bởi công thức

Trang 22

GV yêu cầu HS dựa vào đồ thị và suy

nghĩ trả lời các câu hỏi theo yêu cầu

- Xem và học lý thuyết theo SGK.

- Xem lại các bài tập đã giải và giải lại các bài tập đã hướng dẫn.

-Đọc và soạn trước bài các tập hợp số.

3) Về tư duy và thái độ:

-Tích cực hoạt động, trả lời các câu hỏi Biết quan sát phán đoán chính xác, biết

quy lạ về quen

B.Chuẩn bị :

1 Hs : Nghiên cứu bài trước soạn các hoạt động, bảng phụ để làm nhóm

2 Gv: Giáo án, phiếu học tập( các câu hỏi của các hoạt động trong SGK)

C Tiến trình dạy học:

I.Ổn định lớp, chia lớp thành 6 nhóm

II Kiểm tra bài củ:

Tiết: 10

Trang 23

1 Bài mới:

2 Triển khai bài: HÀM SỐ(tt)

Hoạt động của GV và HS Nội dung ghi bảng

HĐ1(Sự biến thiên của hàm số)

GV ôn tập lại sự biến thiên của hàm số

y= f(x)= x2

GV vẽ đồ thị hàm số y=f(x) = x2 GV

phân tích và hướng dẫn dựa vào hình

vẽ trên bảng

Ta thấy trên khoảng (-∞; 0) đồ thị “đi

xuống” từ trái sang phải Nếu ta lấy 2

giá trị của x trên đồ thị thuộc khoảng

(-∞; 0) sao cho: x1<x2 thì giá trị của hàm

số tương ứng như thế nào( f(x1) và

f(x2))?

Vậy giá trị của biến số tăng thì giá trị

của hàm số giảm Khi đó ta nói hàm số

y = x2nghịch biến trên khoảng (-∞; 0)

GV phân tích và hướng dẫn tương tự

khi lấy các giá trị x1, x2 thuộc khoảng

(0;+∞)

GV gọi HS nêu truờng hợp tổng quát.

HĐ2:Bảng biến thiên đồ thị y = x 2

GV chỉ vào đồ thị hàm số y = x2 và chỉ

chiều biến thiên của hàm số y = x2

Kết quả xét chiều biến thiên dựa vào

đồ thị ta có thể minh họa trong bảng

sau( bảng biến thiên)

GV vẽ bảng biến thiên của đồ thị hàm

số y = x2 trên bảng

Vậy để diễn tả hàm số nghịch biến trên

khoảng (-∞; 0) ta vẽ mũ tên như thế

nào? Tương tự câu hỏi đối với hàm số

đồng biến trên khoảng (0;+∞)

Vậy để diễn tả hàm số nghịch biến trên

khoảng (-∞; 0) ta vẽ mũi tên đi xuống

(từ +∞ đến 0)

Để diễn tả hàm số đồng biến trên

khoảng (0;+∞) ta vẽ mũi tên đi lên ( từ

0 đến +∞)

Vậy khi nhìn vào bảng biến thiên ta có

thể hình dung được đồ thị hàm số đi

lên trong khoảng nào và đi xuống trong

Để diễn tả hàm số nghịch biến trên khoảng

(-∞; 0) ta vẽ mũi tên đi xuống (từ +∞ đến 0);

Để diễn tả hàm số đồng biến trên khoảng (0;+∞) ta vẽ mũi tên đi lên ( từ 0 đến +∞)

HĐ2(Tính chẵn lẻ của đồ thị hàm số) III.Tính chẵn lẻ của hàm số:

Trang 24

GV: Một hàm số như thế nào được gọi

GV yêu cầu HS các nhóm xem nội

dung nội dung hoạt động 8 trong SGK

và tìm tính chẵn lẻ của các hàm số đó

GV gọi HS đại diện 3 nhóm lên trình

bày lời giải kết quả của nhóm mình

GV gọi HS nhận xét, bổ sung (nếu cần)

GV nhận xét (nếu cần) và nêu lời giải

IV Củng cố:

-Gọi HS nhắc lại: +Sự biến thiên của đồ thị hàm số và bảng biến thiên;

+ Tính chẵn, lẻ của đồ thị hàm số;

+ Đồ thị của của hàm số

+Sửa bài tập 3 và 4 SGK trang 39

V.Hướng dẫn học ở nhà: -Xem lại và học lý thuyết theo SGK.

-Làm các bài tập trắc nghiệm sau:

Hãy chon kết quả đúng trong các bài tập sau:

Câu1.Cho hàm số Tập xác định của hàm số là:

Trang 25

Câu2.Cho hàm số Tập xác định của hàm số là:

Câu3 Cho hàm số

(a)Hàm số xác định ; (b)Hàm số xác định ;(c)Hàm số xác định ; (d)Hàm số xác định

-Hiểu được sự biến thiên và đồ thị của hàm số bậc nhất

-Hiểu cách vẽ đồ thị hàm số bậc nhất và đồ thị hàm số Biết được đồ thị hàm số nhận trục Oy là trục đối xứng

2)Về kỹ năng:

-Thành thạo việc xác định chiều biến thiên và vẽ đồ thị của hàm số bậc nhất -Vẽ được đồ thị y = b và

-Biết tìm tọa độ giao điểm của hai đường thẳng có phương trình cho trước

3) Về tư duy và thái độ:

-Tích cực hoạt động, trả lời các câu hỏi Biết quan sát phán đoán chính xác,

biết quy lạ về quen

B.Chuẩn bị :

1 Hs : Nghiên cứu bài và trước soạn các hoạt động, bảng phụ để làm nhóm

2 Gv: Giáo án, phiếu học tập (nếu cần), các câu hỏi trắc nghiệm,…

C Tiến trình dạy học:

I.Ổn định lớp, chia lớp thành 6 nhóm

II Kiểm tra bài củ:

III Bài mới:

1.Đặt vấn đề: Hàm số y = ax + b chúng ta đã được học ở lớp dưới, hôm nay

chúng ta đi nghiên cứu sâu hơn vê nó

2.Bài mới: HÀM SỐ y = ax + b

Hoạt động của GV và HS Nội dung ghi bảng

HĐ1: Ôn tập lại kiến thức của hàm số

bậc nhất

Với hàm số bậc nhất y = ax + b (a≠0) em

hãy cho biết:

+Tập xác định;

+Chiều biến thiên (có giải thích)

GV cho HS suy nghĩ tìm câu trả lời

I.Ôn tập về hàm số bậc nhất y=ax+b (a≠0):

Tập xác định: D = Chiều biến thiên:

+Với a>0 hàm số đồng biến trên ;+Với a<0 hàm số nghịch biến trên

Tiết: 11

Trang 26

GV gọi HS nhóm 1 trình bày kết quả của

nhóm mình

GV gọi HS nhận xét, bổ sung (nếu cần)

GV nêu và viết tóm tắt lên bảng

HĐTP : (Bảng biến thiên của đồ thị hàm

số bậc nhất)

GV như ta đã biết để diễn tả hàm số

nghịch biến ta dùng mũi tên biểu diên đi

xuống và để diễn tả hàm số đồng biến ta

dùng mũi tên biểu diễn đi lên Vậy dựa

vào sự biểu diễn đã biết hãy lập bảng diến

thiên của hàm số y = ax+b (trong hai

trường hợp)

GV gọi HS nhóm 2 lên bảng vẽ bảng biến

thiên

GV gọi HS nhận xét, bổ sung (nếu cần)

GV có thể vẽ lại bảng biến thiên (Nếu HS

vẽ không đúng)

Bảng biến thiên:

(Xem SGK)+a>0:

x -∞ +∞

+∞

y -∞

đi qua gốc tọa độ, không song song và

cũng không trùng với các trục tọa độ

Như ta biết, nếu hai đường thẳng có cùng

hệ số góc thì đồ thị của nó như thế nào

với nhau? Vậy đồ thị của hai hàm số y =

ax và y=ax +b như thế nào với nhau?

*Vậy đồ thị của hàm số y =ax+b

là đường thẳng song song với đường

thẳng y = ax (b ≠0) và đi qua hai điểm

GV yêu cầu HS các nhóm suy nghĩ, thảo

luận để tim lời giải

GV gọi HS nhóm 3 trình bày lời giải

Gọi HS các nhóm khác nhận xét, bổ sung

(nếu cần)

*Đồ thị:

+a>0: y b

a 1 x O

+a<0: y

O a x b

Đồ thị của hàm số y =ax + b (a≠0) là đường thẳng song song với đường thẳng

y = ax và đi qua hai điểm A(0;b) và B

Bài tập:

Cho hàm số y = 3x +5Lập bảng biến thiên và vẽ đồ thị hàm số trên

Trang 27

HĐ3: ( Đồ thị của hàm số hằng y=b)

GV yêu cầu HS xen ví dụ hoạt động 2

SGK trang 40 và thảo luận suy nghĩ trả

lời

GV gọi HS đại diện nhóm 5 trình bày lời

giải của nhóm

(GV vẽ mặt phẳng Oxy lên bảng và gọi

HS lên bảng biểu diễn các điểm theo yêu

cầu của đề ra)

Vậy các điểm (-2;2), (-1;2), (0;2), (1;2),

(2;2) như thế nào với nhau?

Các điểm đã cho đều có trung độ bằng 2

nên nó luôn nằm trên đường thẳng y = 2

Khi đó đường thẳng y =2 trên hình vẽ là

đồ thị của hàm số y = 2 Nếu ta thay b = 2

y = b

Chỉ ra tập xác định của hàm số ?

Và cho biết hàm số đã cho đồng biến,

nghịch biến trên khoảng nào? Vì sao?

Dựa vào chiều biến thiên của đồ thị hàm

số hãy vẽ bảng biến thiên?

GV gọi một HS đại diện nhóm 4 lên bảng

vẽ bảng biến thiên

GV gọi HS nhận xét, bổ sung (nếu cần)

Dựa vào bảng biến thiên ta có thể vẽ được

đồ thị của hàm số đã cho (GV gọi HS đại

diện nhóm 5 lên bảng vẽ đồ thị)

GV nhận xét và nêu viết tóm tắt trên bảng

Tập xác định:

Hàm số nghịch biến trên khoảng

(-∞;0) và đồng biến trên khoảng (0;+∞)

*Bảng biến thiên:

x -∞ 0 +∞

+∞ +∞

y 0

*Đồ thị:

y

1

- 1 O 1 xHàm số y =|x| là một hàm số chẵn, nhận trục

-Xem lại và học lý thuyết theo SGK

-Làm các bài tập trong SGK trang 42

Trang 28

-Biết tìm tọa độ giao điểm của hai đường thẳng cĩ phương trình cho trước.

3)Về tư duy và thái độ:

-Tích cực hoạt động, trả lời câu hỏi Biết quan sát phán đốn chính xác, biết

II Kiểm tra bài củ: Giáo viên gọi 1 học sinh lên bảng trả bài:

vẽ bảng biến

thiên của hàm số y = ax + b, vẽ đồ thị hàm số y = -2x + 1

Yêu cầu học sinh nhận xét các khoảng đồng biến, nghịch biến của 2 hàm

số trên, ghi cụ thể các khoảng đồng biến, nghịch biến

a)y = 2x -3Các giá trị đặc biệt:

x … -1 0 1…

y … -5 -3 -1…

Đồ thị:

Tiết: 12

Trang 29

GV nhận xét và sửa chữa (nếu HS trình

bày lời giải không đúng)

Với hàm số y = |x|-1 ta vẽ đồ thị hàm số y

= x – 1 với x ≥ 0 và lấy đối xứng qua trục

Oy

Khi bài toán yêu cầu vẽ đồ thị của hàm số

ta chỉ xét một vài giá trị đặc biệt của hàm

số và vẽ đồ thị Không nên đi tìm chiều

biến thiên, vì đề ra không yêu cầu

d) y=|x| - 1

Ta có:

Hàm số: y = x – 1Các giá trị đặc biệt:

x … -1 0 1

y … -2 -1 0 …

Đồ thị:

y

-1 O 1 -1

GV nêu câu hỏi:

Nếu đồ thị hàm số y = ax+ b đi qua hai

điểm A và B thì tọa độ của 2 điểm đó

nghiệm đúng phương trình nào?

Vậy từ đây ta thay tọa độ của các điểm A

và B vào phương trình đường thẳng y =

+Với A(0;3), ta có:

b = 3+Với B( ),ta có:

Trang 30

trình bày lời giải chưa đúng).

Vậy …

HĐ3: (Bài tập về tìm phương trình của

đường thẳng)

GV gọi hai HS lên bảng trình bày lời giải

Câu3a) giải tương tự câu 2a);

GV gọi HS nhận xét, bổ sung (nếu cần)

GV nhận xét và bổ sung sửa chữa và nêu

lời giải đúng

3.Viết phương trình y =ax +b của các đường

thẳng:

a)Đi qua hai điểm A(4; 3) và B(2;-1);

b)Đi qua điểm A(1; -1) và song song với Ox

GV phân tích và vẽ đồ thị câu 4a) lên

bảng và yêu cầu HS tự giải bài tập 4b)

Ghi chú: Nếu cịn thời gian thì gọi HS

-Xem lại các bìa tập đã giải

-Đọc và soạn trước bài mới: Hàm số bậc hai, trả lời các câu hỏi trong các hoạt động

- -Ngày soạn:

A.Mục tiêu: Qua bài học HS cần:

1)Về kiến thức: Hiểu được đặc điểm ( hình dạng, đỉnh, trục đối

xứng ) của hàm

Tiết: 13

Trang 31

2)Về kỹ năng: Vẽ được bảng biến thiên , đồ thị của một

hàm số bậc 2 và giải

được 1 số bài toán đơn giản như: tìm phương trình của hàm số

bậc 2 khi biết 1 số yếu tố

3)Về tư duy và thái độ:

- Rèn luyện năng lực tìm tòi và bồi dưỡng tư duy cho học

sinh

-Tích cực hoạt động, trả lời các câu hỏi Biết quan sát phán đốn

chính xác, biết quy lạ về quen

B.Chuẩn bị :

1 Hs : Xem lại cách vẽ đồ thị của hàm số y= ax2 đã học lớp 9 và vẽ đồ thị của

2 hàm số y= 2x2, y= -2x2 theo 2 nhóm

2 Gv: Giáo án, Vẽ trước hình vẽ đồ thị của hàm số bậc 2

trong trường hợp tổng

quát (a>0, a<0 chú ý đỉnh, trục đối xứng) Vẽ bảng tóm tắt chiều biến

thiên của hàm số bậc 2 tổng quát

C Tiến trình dạy học:

I.Ổn định lớp, chia lớp thành 6 nhĩm

II Kiểm tra bài củ: Giáo viên gọi 1 học sinh lên bảng trả bài:

vẽ bảng biến

thiên của hàm số y = ax + b, vẽ đồ thị hàm số y = -2x + 1

Yêu cầu học sinh nhận xét các khoảng đồng biến, nghịch biến của 2 hàm

số trên, ghi cụ thể các khoảng đồng biến, nghịch biến

III.Bài mới:

2 Đặt vấn đề: ở lớp 9 các em đã học và vẽ đồ thị

hàm số y= ax2 (a≠0), nay ta xét thêm dạng mởrộng của hàm số đó là y= ax2 + bx + c (a≠0), hàmsố đó gọi là hàm số bậc 2 có dạng tổng quát

3 Triển khai bài:

Hoạt động của GV và HS Nội dung ghi bảng

Hoạt động 1 : giáo viên

yêu cầu học sinh 2 nhóm

treo 2 bảng vẽ đồ thị 2 hàm

số đã vẽ ở nhà lên bảng

sau đó yêu cầu học sinh ghi

lại các khoảng đồng biến,

nghịch biến lên bảng (chú

ý bề lõm đồ thị)

Hàm số bậc 2 là hàm số códạng y= ax2 + bx + c (a≠0)

Tập xác định: D = R

Trang 32

Giáo viên yêu cầu học sinh

nhận xét đỉnh, trục đối

xứng của đồ thị

Giáo viên hướng dẫn học

sinh biến đổi y= ax2 + bx + c

Giáo viên yêu cầu học sinh

nhận xét trả lời:

x= y= ?

+ a>0 y ? I là điểm như

thế nào so với tất cả

những điểm còn lại của đồ

thị

+ a<0 tương tự

+ Gv treo bảng vẽ đồthị

của hàm số y = ax2 + bx + c

chỉ rõ cho học sinh trục đối

xứng đỉnh

I.ĐỒ THỊ CỦA HÀM SỐ BẬC 2

1) Nhận xét: đồ thị hàm số

Có trục đối xứng là

đường thẳng x= Parabol nàycó bề lõm quay lên nếu a>0và bề lõm quay xuống nếua<0

2) Cách vẽ:

+ Tìm toạ độ đỉnh

+Vẽ trục đối xứng x=

+ Lập bảng giá trị (5 điểm)(có đỉnh )

+ Vẽ đồ thịVD: Vẽ đồ thị hàm số: y = x2 –2x + 3

Giải+ Đỉnh I (1;2)

+ Trục đối xứng: x=1+ Bảng giá trị:

x -1 0 1 2 3

Trang 33

Gv: yêu cầu học sinh dựa

vào đồ thị hàm số trên

bảng nêu cách vẽ đồ thị

của hàm số y = ax2 + bx + c

Gv: Chia học sinh làm 4 nhóm

vẽ đồ thị 2 nhóm nào làm

hoàn thành trước treo lên

bảng yêu cầu các nhóm

khác nhận xét

Gv yêu cầu 2 nhóm học sinh

đã chia sẵn nhận xét chiều

biến thiên của hàm số y =

ax2 + bx + c (a≠0) và ghi lên

bảng (2 TH a>0 và a<0)

Gv cho học sinh tra lại bằng

cách yêu cầu học sinh đứng

tại chỗ đọc nội dung định lý

trong sách giáo khoa và tự

ghi vào vở

y 6 3 2 3 6

2

x +

y

Định lí: SGK

IV Củng cố, dặn dò: Giáo viên yêu cầu học sinh nhắc

lại cách vẽ đồ thị hàm số y= ax2 + bx + c (a≠0) Chú ý công thức tính tọa độ điểm

Vẽ bảng biến thiên của hàm số y= ax2 + bx + c (a≠0)

Yêu cầu học sinh làm bài tập 1,2 sách giáo khoa trang 49; có thể thêm bài 3

Ngày soạn:

- -BÀI TẬP HÀM SỐ BẬC HAI

A.Mục tiêu: Qua bài học HS cần:

1) Về kiến thức: Hiểu được đặc điểm (hình dạng, đỉnh,

trục đối xứng) của hàm

số bậc 2 và chiều biến thiên của nó

2) Về kĩ năng: vẽ được bảng biến thiên , đồ thị của

một hàm số bậc 2 và giải

Tiết: 14

Trang 34

được 1 số bài toán đơn giản như: tìm phươngtrình của hàm số

bậc 2 khi biết 1 số yếu tố

3) Về tư duy : rèn luyện năng lực tìm tòi và bồi dưỡng

tư duy cho học sinh

B.Chuẩn bị :

1 Hs : Xem lại cách vẽ đồ thị của hàm số y= ax2 + bx + c (a≠0)

2 Gv: Giáo án, Vẽ trước hình vẽ đồ thị của các hàm số bậc

2 ở phần bài tập

C Tiến trình dạy học:

I.Ổn định lớp, chia lớp thành 6 nhĩm

II Kiểm tra bài củ: Yêu cầu học sinh vẽ vào bảng phụ treo lên

bảng cách vẽ đồ

thị hàm số y= ax2 + bx + c (a≠0) Bảng biến thiên cũng như

các khoảng đồng biến, nghịch biến của hàm số

III.Bài mới:

Hoạt động của GV và HS Nội dung ghi bảng

* Hoạt động 1: giáo viên

yêu cầu học sinh sửa bài

tập làm ở nhà

Giáo viên yêu cầu 4 học

sinh lên bảng giải và yêu

cầu 4 học sinh khác nhận

xét kết quả

Giáo viên: 1 điểm nằm

trên Oy có gì đặc biệt ?

tương tự cho điểm nằm trên

trục hoành?

HS: Điểm trên Ox: y=0

Điểm trên Oy: x=0

Giáo viên yêu cầu 2 học

sinh lên bảng ghi lại bài giải

câu c, d các câu khác cách

giải tương tự

1) Xác định tọa độ đỉnh và các giao điểm với trục tung trục hoành (nếu có) của mỗi Parapol

a) y=x2 – 3x + 2 b) y= -2x2 + 4x – 3 c) y=x2 – 2x

d) y= -x2 + 4

Giải   :

a) I( ) giao điểm Oy N(0;2); giao điểm Ox: M1(1;0) ; M2(2;0)b) I(1;-1) giao điểm Ox: không có; giao điểm Oy: M(0;-3)

c) I(1;-1) giao điểm Ox: M1(0;0);

M2(2;0) Giao điểm Oy N (0;0)d) I(0;0)giao điểm Ox:M1(2;0),M2(-2;0) Giao điểm Oy: N(0;4)

2) Lập bảng biến thiên và vẽđồ thị các hàm số

a) y= 3x2 – 4x + 1 b) y=-3x2 +2x – 1 c) y= 4x2 – 4x + 1 d) y= -x2 + 4x – 4

Trang 35

* Hoạt động 2: giải tiếp

các bài tập

Giáo viên chia học sinh làm

4 nhóm làm câu a 2 nhóm

làm trước nhất treo lên

f) y= -x2 + 2 -1

Giải   :

c) I( ) bảng biến thiên

x

y 0

I(2;0)Bảng biến thiên

x 2

y 0 Bảng giá trị:

x 0 1 2 3 4

y -4 -1 0 -1 -4Đồ thị:

y x

O 2

3) xác định Parapol (P) y= ax2 +bx +2 biết Parapol đó:a) qua M(1;5); N(-2;8)

b) qua A(3;-4) có trục đối xứng là x=

Trang 36

bảng, 2 nhóm còn lại nhận

Giáo viên:tung độ đỉnh y=?

Dự phòng còn thời gian:

Giáo viên hướng dẫn học

sinh làm bài 4

Vậy (P): y=2x2+x+2b) Qua A(3;-4) tđ x = -3/2 x=-b/2a

A(3;-4) (P) 9a+3b+2=-4 (1)Trục đx x=-3/2

Vậy (P): y=- x2-x+2c) Đỉnh I (2;-2):

nên thế x=2 vào pt (P)

I(2;-2) (P) 4a+2b+2=-2 (1)

Vậy (P): y=-x2-4x+2

d) y=

B(-1;6) (P) a-2+2=6 (1)y=

b2 – 8a = -24a (2)

Trang 37

Từ (1), (2) và (3) suy ra: Vậy (P): y=-4x2-8x+2

4) xác định a,b,c biết Parapol (P)y=ax2 + bx +c đi qua A(8;0) và có đỉnh I(6;-12)

IV CỦNG CỐ TOÀN BÀI

Giáo viên chia học sinh làm 2 nhóm làm 2 câu sau:

a) Hàm số y= -4x2 – x +1 có đỉnh I ( ? ) Đồng biến trên? Nghịch biến trên?

b) Hàm số y= x2 – x + 1 có đỉnh I: ? Đồng biến trên?

Nghịch biến trên?

V HƯỚNG DẪN, DẶN DÒ

1) Học lại tập xác định của hàm số, định nghĩa hàm số chẵn, lẻ Tính đồng

biến, nghịch biến của hàm số

2) Làm bài tập ôn chương 2

Ngày soạn:

-Tính đồng biến, nghịch biến của hàm số trên một khoảng

-Hàm số y = ax + b Tính đồng biến, nghịch biến, đồ thị của hàm số y = ax + b -Hàm số bậc hai y = ax2 + bx + c Các khoảng đồng biến, nghịch biến và đồ thị của hàm số y = ax2+bx+c

2)Về kỹ năng:

-Vận dụng thành thạo kiến thức cơ bản vào giải các bài tốn về tìm tập xác định của một hàm số, xét chiều biến thiên và vẽ đồ thị của hàm số y = ax + b Xét

chiều biến thiên và vẽ đồ thị hàm số y = ax2+bx+c

3) Về tư duy và thái độ:

-Rèn luyện tư duy logic, trừu tượng.

-Tích cực hoạt động, trả lời các câu hỏi Biết quan sát phán đốn chính xác, biết

Trang 38

III.Bài mới:

Hoạt động của GV và HS Nội dung ghi bảng

HĐ1: (Ôn tập lại kiến thức cơ bản thông

qua các bài tập)

GV: gọi từng HS trả lời các câu hỏi từ 1

đến 7 để ôn tập lại kiến thức cơ bản

HS: suy nghĩ và trả lời các câu hỏi từ bài

tập 1 đến bài tập 7 trong SGK trang 50

GV:gọi HS nhận xét, bổ sung (nếu cần).

GV: nêu lời giải đúng (nếu HS không trả

lời chính xác)

HĐ2: (Bài tập về tìm tập xác định của

các hàm số)

GV yêu cầu HS các nhóm xem nội dung

bài tập 8b) và 8c) Cho HS thảo luận

nhóm và gọi HS đại diện trình bày lời

giải.

GV gọi HS đại diện hai nhóm 1 và 2 lên

bảng trình bày lời giải.

GV yêu cầu HS các nhóm xem nội dung

bài tập 9b) và 9c) Cho HS thảo luận

nhóm và gọi HS đại diện trình bày lời

giải.

GV gọi HS đại diện hai nhóm 3 và 4 lên

bảng trình bày lời giải.

Đồ thị:

4

2

d)y = |x+1|

Trang 39

HĐ4: (Bài tập về lập bảng biến thiên và

vẽ đồ thị hàm số bậc hai)

GV cho HS các nhóm thảo luận và tìm lời

giải bài tập 10b) và gọi HS đại diện nhóm

có lời giải giải nhanh nhất lên bảng trình

bày lời giải.

GV gọi HS nhận xét, bổ sung (nếu cần) và

GV nêu lời giải đúng.

HĐ 5: (Bài tập về xác định các hệ số a, b,

c của parabol y=ax2+bx +c)

GV yêu cầu HS các nhóm xem nội dung

bài tập 12b) và thảo luận suy nghĩ tìm lời

giải.

GV gọi HS đại diện nhóm 6 trình bày lời

giải của nhóm.

GV gọi HS nhận xét, bổ sung (nếu cần) và

GV nêu lời giải chính xác.

Do đó hàm số đồng biến trên (-1;+∞) và nghịch biến trên (-∞;-1)

Vậy ta có bảng biến thiên và đồ thị …

Vì I(1;4) là đỉnh của parabol y = ax2+bx+c

nên suy ra:

-Xem lại các bài tập đã giải.

-Ôn tập lại kiến thức cơ bản trong chương II và giải các bài tập còn lại trong

SGK và những bài tập tương tự trong SBT.

Ngày soạn:

- -KIỂM TRA 1 TIẾT

A Mục tiêu: Qua bài học HS cần nắm:

Trang 40

thiên

của hàm số y = ax2+bx+c

-Làm được các bài tập đã ra trong đề kiểm tra

-Vận dụng linh hoạt lý thuyết vào giải bài tập

3)Về tư duy và thái độ:

-Phát triển tư duy trừu tượng, khái quát hĩa, tư duy lơgic,…

-Học sinh cĩ thái độ nghiêm túc, tập trung suy nghĩ để tìm lời giải, biết quy lạ về quen

B Chuẩn bị của GV và HS:

GV: Giáo án, các đề kiểm tra, gồm 8 mã đề khác nhau

HS: Ơn tập kỹ kiến thức trong chương I, chuẩn bị giấy kiểm tra

C Tiến trình giờ kiểm tra:

Lập bảng biến thiên và vẽ đồ thị của hàm số y = -x2 + 2x + 1

Bài 3: (3điểm) Tìm parabol y = ax2 + bx + 1, biết parabol đĩ:

a) Đi qua 2 điểm M(1 ; 5) và N (-2 ; -1)

b)Đi qua A(1 ; -3) và cĩ trục đối xứng x =

Bổ sung: Giáo viên cĩ thể thay đổi câu 3 giữa các lớp

+ Cẩn thận chính xác

+ Xây dựng bài tự nhiên và chủ động

Tiết: 17

Ngày đăng: 05/03/2021, 20:48

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w