1. Trang chủ
  2. » Vật lý

Tải Chứng minh các tam giác đặc biệt trong đường tròn - Chuyên đề Toán lớp 9 luyện thi vào lớp 10

5 53 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 111,75 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Bài tập tự luyện về bài toán chứng minh các tam giác đặc biệt trong đường tròn Bài 1: Cho đường tròn (O; R) đường kính AB.. M là trung điểm của OA.[r]

Trang 1

Chứng minh các tam giác đặc biệt trong đường tròn

I Cách chứng minh các tam giác đặc biệt

1 Tam giác cân

+ Tam giác có hai cạnh bằng nhau là tam giác cân

+ Tam giác có hai góc bằng nhau là tam giác cân

+ Tam giác có đường cao đồng thời là đường phân giác hay đường trung tuyến thì tam giác ấy là tam giác cân

2 Tam giác đều

+ Tam giác có ba cạnh bằng nhau là tam giác đều

+ Tam giác có ba góc bằng nhau là tam giác đều

+ Tam giác cân có một góc bằng 600 là tam giác đều

+ Tam giác cân tại hai đỉnh thì tam giác ấy là tam giác đều

3 Tam giác vuông

+ Tam giác có một góc vuông thì tam giác ấy là tam giác vuông

+ Tam giác có hai cạnh nằm trên hai đường thẳng vuông góc thì tam giác ấy là tam giác vuông

+ Sử dụng định lý Pitago đảo để chứng minh tam giác là tam giác vuông

+ Tam giác nội tiếp đường tròn và có một cạnh là đường kính thì tam giác ấy là tam giác vuông

4 Tam giác vuông cân

+ Tam giác vuông có hai cạnh góc vuông bằng nhau thì tam giác ấy là tam giác vuông cân

+ Tam giác vuông có một góc bằng 450

thì tam giác ấy là tam giác vuông cân + Tam giác cân có một góc đáy bằng 450 thì tam giác ấy là tam giác vuông cân

II Bài tập ví dụ cho bài toán chứng minh các tam giác đặc biệt trong đường tròn

Trang 2

Bài 1: Cho nửa đường tròn (O; R) đường kính AB Điểm M thuộc nửa đường tròn.

Gọi H là điểm chính giữa cung AM Tia BH cắt AM tại I Tiếp tuyến của nửa đường tròn tại A cắt BH tại K Nối AH cắt BM tại E Chứng minh:

a, Tam giác BAE là tam giác cân

b, KH.KB = KE.KE

Lời giải:

a, + Có AHB nhìn đường kính AB nên  AHB  900

Suy ra BH vuông góc với AH hay BH vuông góc với AE

+ Tam giác BAE có BH vuông góc với AE nên BH là đường cao của tam giác ABE (1)

+ Có ABH là góc nội tiếp chắn cung AH

MBH là góc nội tiếp chắn cung HM

Mà số đo cung AH bằng số đo cung HM

Suy ra  ABHHBM  hay BH là phân giác của ABE(1)

+ Từ (1) và (2) có BH vừa là đường cao vừa là đường phân giác của tam giác ABE nên tam giác ABE cân tại B (tính chất)

b, + Có tam giác ABE là tam giác cân tại B, BH là đường cao nên BH là đường trung tuyến nên AH = HE

Trang 3

+ Xét tam giác AKE có KH vuông góc với AE và AH = HE nên tam giác AKE cân tại

K Suy ra AK = KE (tính chất)

+ Xét ram giác AKB có BAK   900 và AH vuông góc với BK nên AK2  KH KB

mà AK = KE (chứng minh trên) nên KE2  KH KB (đpcm)

Bài 2: Cho nửa đường tròn (O) đường kính AB = 2R Kẻ hai tiếp tuyến Ax, By của

nửa đường tròn (O) Tiếp tuyến thứ ba tiếp xúc với nửa đường tròn (O) tại M cắt Ax,

By lần lượt tại D và E Chứng minh tam giác DOE là tam giác vuông

Lời giải:

+ Có Ax và MD là hai tiếp tuyến cắt nhau tại D suy ra OD là tia phân giác của AOM

+ Có By và ME là hai tiếp tuyến cắt nhau tại E suy ra OE là tia phân giác của BOM

+ Có AOMBOM là hai góc kề bù suy ra BOM    AOM  900

2

AOM AOD DOM  

(OD là tia phân giác của AOM )

2

BOM BOE MOE  

(OE là tia phân giác của BOM )

Trang 4

Suy ra ta có

0 0 0

90 90

DOE

Vậy tam giác DOE là tam giác vuông

III Bài tập tự luyện về bài toán chứng minh các tam giác đặc biệt trong đường tròn Bài 1: Cho đường tròn (O; R) đường kính AB M là trung điểm của OA Kẻ dây CD vuông góc với OA tại M Chứng minh:

a, Chứng minh tứ giác ACOD là hình thoi

b, Chứng minh BCD đều

c, Tính diện tích tam giác BCD theo R

Bài 2: Cho đường tròn (O; R), M là một điểm ở ngoài đường tròn sao cho OM = 2R.

Tia MO cắt đường tròn ở A và B (A nằm giữa M và O) Từ M kẻ 2 tiếp tuyến MC và

MD với đường tròn (O), H là giao điểm của MO với CD Chứng minh:

a, Tứ giác MCOD nội tiếp, MO vuông góc với CD

b, Tam giác MCD là tam giác đều

Bài 3: Cho đường tròn (O; R) và điểm A nằm ngoài đường tròn sao cho OA = 2R Vẽ

các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm) Chứng minh tam giác ABC đều

Bài 4: Từ một điểm ở ngoài đường tròn (O), kẻ tiếp tuyến AB với đường tròn (B là

tiếp điểm) Gọi I là trung điểm của đoạn AB, kẻ tiếp tuyến IM với đường tròn (O) (M

là tiếp điểm) Chứng minh tam giác ABM là tam giác vuông

Bài 5: Cho đường tròn tâm O Gọi I là trung điểm của bán kính OA Qua I kẻ dây BC

vuông góc với OA Chứng minh tứ giác ABOC là hình thoi

Bài 6: Cho đường tròn tâm O bán kính R, đường kính AB M là trung điểm của AO.

Kẻ dây CD vuông góc với OA tại M Chứng minh:

a, Tứ giác ACOD là hình thoi

b, Chứng minh tam giác BCD đều

Trang 5

Tải thêm tài liệu tại:

https://vndoc.com/luyen-thi-vao-lop-10

Ngày đăng: 04/03/2021, 11:21

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w