1. Trang chủ
  2. » Giáo Dục - Đào Tạo

slide bài giảng đại số giải tích 11 tiết 66 quy tắc tính đạo hàm

9 18 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 557 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Giáo viên: Th.S Vũ Văn Quý... Vậy còn cách nào để tính được đạo hàm của những hàm số dạng trên dễ dàng không ?... QUY TẮC TÍNH ĐẠO HÀM 2.

Trang 1

Giáo viên: Th.S Vũ Văn Quý

Trang 2

1)

Đáp án

2

, 1) y  3 x  1

3

, 2) y  4 x  2 x

KIỂM TRA BÀI CŨ Câu 1: Tính đạo hàm của các hàm số sau

Trang 3

 2  2

1

Cho hàm số: Ta có đạo hàm của hàm

số là:

  2 '   '

Vấn đề đặt ra là để tính đạo hàm của  2  20

1

Để trả lời câu hỏi này thì ta đi tìm hiểu nội dung

bài học ngày hôm nay

bằng các công thức đã học rất phức tạp Vậy còn cách nào để tính được đạo hàm của những hàm số dạng trên

dễ dàng không ?

Trang 4

Tiết 66: §2 QUY TẮC TÍNH ĐẠO HÀM

I – ĐẠO HÀM CỦA MỘT SỐ HÀM SỐ THƯỜNG GẶP

II – ĐẠO HÀM CỦA TỔNG, HIỆU, TÍCH, THƯƠNG

III – ĐẠO HÀM CỦA HÀM HỢP

1 Hàm hợp

a ( ) b

( ( ))

yf g x

c ( ) d

( )

u g x

x

g

( )

y f u

f

( ( ))

x a f g x

Khi đó, ta lập một hàm số xác định trên (a;b) và lấy giá trị trên theo quy tắc sau: � Ta gọi hàm y = f (g(x)) là hàm hợp của hàm y = f (u)

với u = g(x).

Trang 5

Tiết 66: §2 QUY TẮC TÍNH ĐẠO HÀM

I – ĐẠO HÀM CỦA

MỘT SỐ HÀM

SỐ THƯỜNG GẶP

II – ĐẠO HÀM CỦA

TỔNG, HIỆU,

TÍCH, THƯƠNG

III – ĐẠO HÀM

CỦA HÀM HỢP

1 Hàm hợp

Ví dụ 1: a) Hàm số  2  20

1

yxlà hàm hợp của hàm số   20

yu với u = x2 + 1.

Hoạt động nhóm: Các hàm số sau là hàm hợp của hàm số nào?

Nhóm 1:

Nhóm 2:

Nhóm 3:

 2 10

3

yx

2

yxx

 17 2

y   x

Hàm hợp có đạo hàm không

và nếu có thì được tính như

thế nào?

b) Hàm số y  2 x  1 là hàm hợp của hàm số yu với u = 2x + 1.

Hoạt động nhóm: Các hàm số sau là hàm hợp của hàm số nào?

Nhóm 1:

Nhóm 2:

Nhóm 3:

 2 10

3

yx

2

yxx

 17 2

y   x

của hàm số

là hàm hợp

 10

yu với u = x2 + 3.

với u = 2+x.

là hàm hợp của hàm số  17

yu

là hàm hợp của hàm số yu với u = x2 + x.

Đáp án

Trang 6

I – ĐẠO HÀM CỦA

MỘT SỐ HÀM

SỐ THƯỜNG GẶP

II – ĐẠO HÀM CỦA

TỔNG, HIỆU,

TÍCH, THƯƠNG

III – ĐẠO HÀM

CỦA HÀM HỢP

1 Hàm hợp

Tiết 66: §2 QUY TẮC TÍNH ĐẠO HÀM

2 Đạo hàm của hàm hợp

Nế u hà m số u ( ) có đạo hà m tại là và hà m số ( )

có đạo hà m tại là thì hà m hợp

( ( )) có đạo hà m tại là

x

u

g x

u y

y y u

�  � �

��NHL�4  2  20

1

yx

Ví dụ 2: Tính đạo hàm của hàm số sau:

 

19

19 2

19 2

, , . , 20 2

x x

 

'

20 19

' 2

, ,

20

u

x

� �

I – ĐẠO HÀM CỦA

MỘT SỐ HÀM

SỐ THƯỜNG GẶP

II – ĐẠO HÀM CỦA

TỔNG, HIỆU,

TÍCH, THƯƠNG

III – ĐẠO HÀM

CỦA HÀM HỢP

1 Hàm hợp

2 Đạo hàm của

hàm hợp:

y = f (g(x)) =

.

y �  y u � �

( )

g x

v� i u

Giải Đặt: u = x2 +1y u  20

Trang 7

Tiết 66: §2 QUY TẮC TÍNH ĐẠO HÀM

Hoạt động nhóm: Tính đạo hàm số hợp sau: Nhóm 1:

Nhóm 3:

 2 10

3

yx

2

yxx

 2  9  2  9

, 10 3 (2 ) 20 3

yxxx x

2 1

x

Nhóm 2:  17

2

y   x

I – ĐẠO HÀM CỦA

MỘT SỐ HÀM

SỐ THƯỜNG GẶP

II – ĐẠO HÀM CỦA

TỔNG, HIỆU,

TÍCH, THƯƠNG

III – ĐẠO HÀM

CỦA HÀM HỢP

1 Hàm hợp

2 Đạo hàm của

hàm hợp:

y = f (g(x)) =

.

y �  y u � �

( )

g x

v� i u

Trang 8

Tiết 66: §2 QUY TẮC TÍNH ĐẠO HÀM

3) u vu v v u

6) y = y u

2

,

,

1

� �

� �

-2

,

� �

� �

 

Bảng tóm tắt

I – ĐẠO HÀM CỦA

MỘT SỐ HÀM

SỐ THƯỜNG GẶP

II – ĐẠO HÀM CỦA

TỔNG, HIỆU,

TÍCH, THƯƠNG

III – ĐẠO HÀM

CỦA HÀM HỢP

1 Hàm hợp

2 Đạo hàm của

hàm hợp:

y = f (g(x)) =

.

y �  y u � �

( )

g x

v� i u

Ngày đăng: 27/02/2021, 17:03

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w