Hdn nffa vdi diTdng thing (d) thoa tinh chat cac giao di<^m ciia cac dufdng thing trong A^QOS ci cung mot nufa mat phing cd bd la (d) (luc nao trong Ajoojta ctlng chpn difdc mot d[r]
Trang 1TS N G U Y E N CAM (Chu bien)
^ ThS N G U Y E N V A N PHUCfC
REN LUYEN TOAN NANG CAO
* Phan loai cac dang toan nang cao dinh cho hoc sinh khi gi6i
* Tuyen chon cac de thi tuyen sinh Idp 10 vao cac triTdng chuyen
THLT VIENTIfvHBINH THUAN
Trang 2LdlNOIDAU
Cung vdi viec bien soan bo sach Ren luy^n todn can ban LOP 9, chiing toi gidi tliieu cuon Ren luyen todn ndng cao DAI SO 9 nham giup
cac em hoc sinh nang cao trinh do de tham gia cac ki thi tuyen vao Idp 10
thuQC cac trirdng chuyen, Idp chuyen
Cuon sach bao gom 9 chifcfng :
ChUdng 1 : Dang thiJc
ChiTdng 2 : Bat dang thiJc
Chufdng 3 : So hoc
ChiTdng 4 : Gia tri Idn nhat va gia tri nho nhat cua ham so
ChiTdng 5 : Phifdng trinh
ChUdng 6 : He phifdng trinh
ChiTdng 7 : Do thi ham so
ChiTcfng 8 : Mot so bai toan ve td hdp ; dpng tiJ
ChiTdng 9 : Mot so de thi vao Idp 10
Vdi muc dich h5 trd dac life viec tuT hoc ciia minh, cuon sach diTc^c
trinh bay theo bo cue nhiT sau : md dau mSi chufdng la phan torn t^t cac kien thilc can ye'u ma hoc sinh phai nam vffng; tiep theo la mot he tho'ng b^i tap CO hiTdng din each giai diTdc sap xep theo thiJ tif kho dan
De viec hoc cd ket qua to't, sau khi doc va tim hieu that ky cac bai tap CO hiTdng din hoc sinh nen co gang tif minh giai cac bai tap ay mot cdch doc lap cho den khi thuan thuc Vdi each lam ay, hy vong cac em se tif minh kham pha ra nhieu each giai khac mot each thu vi
Raft mong nhan diJdc cac y kien phe binh cua quy doc gia de cuon
sich ngay cang diTdc hoan thien va phuc vu ban doc tot hdn
TM.nhdm tdc gid
TS Nguyen Cam
3
Trang 33) {a + bf =a' -h^a'b + ^ab^ +b\
4) {a-bf=a' -3a'b +3ah^-b\
Trang 41.1: Tinh cac bieu thitc :
- 2 -3 2) Khi a = - T a c 6 : M = — ^
1) A = ^Ja^ -6a + 9 =^(a-3y =\a-3\
a-3 neu a-3>0 f a - 3 new a > 3
3 - a n ^ M a - 3 < 0 3 - a neu a<3
2) 5 = V7 + V x ' - 4 x + 4 = V7 + ^ ( x - 2 ) '
= | x | + | x - 2 |
-x-x + 2neu x<0 {-2x + 2 ne'ux<0 x-x + 2 neu0<x<2 = l2 neu 0<x<0
Trang 51) T i m dieu kien cua a de M CO nghia
2) Rut gon bieu thu-c M 3) V d i gia tri nguyen nao cua a thi M c6 gia tri nguyen ?
Trang 61: l + \/aj (a + l)(x/a-l)
a>0
1) Bieu thu'c M c6 nghia <=> \ 4a^0 \a>0 <=> {
2) Vdi dieu kien a > 0 va \a c6:
' 1 ^ ( v / ^ - l j (l + V^)(-v/^-lj
a > 0
1: 1 + VaJ (a + l)(Va-l) (a + l)(Va-l)
a + \ a + 1 3) Ta c6: M = -^-^ = 1 - — B i e u thu'c M nhan gia tri nguyen
a + 1 a + 1 khi
Vay khi a = 0 thi bieu thu'c M nhan gia tri nguyen
1.8: Cho bieu thu'c:
M =
b'
vdi |a| > |^>| > 0
Rut gon bieu thu'c M
Vdi dieu kien a\>\b\> 0 Tacd:
10
a' + l a ^ l a ^ + a^-b^-a^+ la^a"-b"-a" + b" 4|a|Va^-6'
a^-[a'-b') b'
'A\a \4^^ 4\a\b^yja^-b^ [-1 neu a<Q
DC 1.9: Riit gon bieu thu'c:
3 (yfai) - b) (yfa - f + 2av'a + b ^
Trang 71.10: Rut gon bieu thrfc sau:
yfx^^l
Trang 82) Ta cu :
J : = ^ / x - l - 2 ^ / ] ^ ^ + ^/x + 7 - 6 V x ^
Trang 9c - a = 0
Vay, nSu a^ +b^ -ab-bc-ac = 0 thi a = b = c
)e 1.17: Cho ba so' a, b, c sao cho c ;t b, c ?t a + b va
nen: = a^ + {c^ + lab ~ lac - 2bc)
s = (a^ - 2ac + ) + 2Z)(a - c)
= {a-cf+lb{a-c) = {a-c){a-c + lb)
Wngtuf: b'^ =b^+(c^+lab-lac-lbc^
= [b^ -lbc + c^) + la(b-c)
= (b-cy +laib-c) = {b-c)(b-c + la)
a' + {a-cf _ (a - c){a-c + 2A)^+ (a - cf
Do do:
b'+ib-cf ~ ib-c)(b - c + la) + {b- cf
(a-c)(la-lc + lb) _a-c
~ (b-c)(2b-lc + la) b-c (vi a+b^c)
D6 1.18: Cho a, b, c doi mot khac nhau va thoa
Trang 10(b-cf {c-af (c-bf
De 1.19: Cho ba so' a, b, c thoa a + b + c = abc
Chu-ng minh: a(A' - l)(c' -1) + b(a^ - l)(c' -1) + c(a' - \)(b^ -1) = 4abc
GiSi
Ta CO: a(b^ - l)(c' -1) + b(a^ - l)(c' -1) + c{a^ - \)(b^ -1)
= ia + b + c) + (ab^c^ + baV + ca^b^) - (ab^ + ba^ +ca^+c^a+be" + b'^c)
= abc + {ab^c^ + ba^c^ + ca^b'^) - [ab{b + a)+ ac{a + c) + bc{b + c)
= abc + (ab^c^ + ba^c^ + ca^b^) - [ab(abc -c)+ac{abc -b) + bc{abc - a)
(vi a + b + c = abc nen a+b-abc-c,b + c-abc-a,a + c = abc-b)
= abc + (ab^c^ + ba^c" + cc^b^) - (a^Z»'c+a'c^i+ab'^c^)+l>abc = 4abc
Vay ddng thiJc da diTdc chiJag minh
1.20: Cho - = ^ = - = wa b c (m>0). Chiang minh ring :
Trang 11nen phai xay ra b'=b'
\6i =a^ => a^(a-l)-0=> a = 0 hay a-l=>a^=a
vadodd S = a + b^+c^ =a^ +b^ = \ VayS = l
a>b <:i> a-b >Q
a>b <^ a-b>0
Chu v; Vdi moi so' thrfc X, ta cd: > 0
II C A C TINH C H X T C d BAN CUA BAT DANG THLfC
Trang 12<:>a\a-b)-b\a-b)>0<>(a^-b^)(a-b)>0 o(a + b)(a-b)(a-b)>0<:>ia + b)(a-by >0 (*)
V i a > 0 , 6 > 0 nen a + b>0 va (a-bf >0 n^n (*) diing
Vay +b^ >a^b + ab^
Bi 2.2: Cho a > 0, b > 0 Chitng minh: + > ^/a + V ^
Vay: - ^ + - ^ > y/a + yfb
f)i 2.4: Chitng minh cac ba't dang thtfc:
1) a " * > a^6 + aZ>^ vdi moi a, b 2) a ' + 6 ' > - v d i a + 6 > 1
Trang 13D6 2.6: Chu'ng minh rang vdi m o i a, b, c, d, e ta c6:
(a^ >a{b + c + d + e)
a ,2 •
a* b^
T a c d : a ' < — + — •
b' a'
O a^t' + a'b' <a'+b'<^a'- a'b' + b'- a'b' > 0
O a'(a' - fc') - b\a^ -b')>Oo(a'- b')ia' -b')>0
o(a' -b')ia' -b'){a' +a'b'+b')>0
<:>ia'-b')\a'+a^b^ + b')>0 (dilng)
V a y : a +b' <^ + ^
b a
6 ^ 6
D d 2.8: C h o a.b>0 Chu'ng minh rang: (a + bfxy<{ax + by)(bx + ay)
T a c(5: (a + b)"" xy<(ax + by)(bx + aj)
<=> a^xy + 2aZ7jc>' + b^xy < abx^ + aby^ + c^xy + b^xy
<:> abx^ + aby'' - 2aZ?x>' > 0 <::> ab{x^ + -2^:^) > 0
<^ab{x-yf>Q
Ba't d^ng thi?c n a y diing vi ab > 0,(jc - y)^ > 0
V a y : {a + bf xy <{ax-\- by)(bx + ay)
Bi 2.9: C h o a + > 2 Chu'ng m i n h rang: a^ +b' <a' +b\
Gidi
TsiCd: a'+b'>a'+b^
oa'-a'+b'-b'>0 c>a\a-l) + b\b-l)-{a-\)-ib-l) + a + b-2>0
Trang 14Mat khac, ta lai cd: (1 + a + + c)^ > 0
^\ a^ +b^ + +2(ab + bc + ca) + 2(a + b + c)>0
=>2 + 2(ab + bc + ca) + 2(a + b + c)>0 (vi a^ + b^ =1)
Do do de chiing minh (1) ta chi can chiJng minh bat ddng thrfc sau:
a(l-b) + b(\-c) + c(\-a)<\)
That vay, ta c6: 1 - a > 0,1 - ^ > 0,1 - c >,a^c > 0
nen (1 - a)(l - ^)(1 - c) + a^c > 0
a + c
2c-2ac
a + c a^+3ac c'^+3ac 1
Trang 15(1) 2.14: Cho ba s6' a, b, c thoa: ab + bc + ca>0 (2)
=>bc>-a(b + c)>0 (vi a<0,b + c>0)
Do a < 0 va b o 0 nen suy ra abc < 0 Dieu nay trai vdi gia- thi6'l
la abc > 0
Trirdng hop b < 0 hoac c < 0, ta ly luan trfdng tif
Vay ta da chiJng minh r^ng: a > 0, b > 0, c> 0
Bi 2.15: Cho 0 < a < l , 0 < b < l , 0 < c < l Chitng minh trong ba bat
dang thtJc sau cd it nha't mot bat dang thiJc la sai:
ail-b)>]-, b(l-c)>]-, c(\-a)>]- 4 4 4
Gi^i
Ta chiJng minh bang phan chiJng:
Gia su" ca ba bat ding thiJc deu dung, liic dd nhan ve'theo ve ta cd:
a(l-a)bil-b)c(\-c)>
^ 3
(1) Mat khac ta cd:
Dieu nay mau thuan vdi (1)
Vay ta phai cd: Trong ba bat dang thiJc trong di bai cd it nhat
mot bat dang thiJc sai
Trang 16§ 2 BAT DANG THLfC COSI (Cauchy)
I BS't d a n g thufc C6si cho h a i so' k h o n g fim
C h o a > 0 , & > 0 :
Ta c6: a + b > 2 ^
Da'ii dang thiJc xay ra ^ a = b
I I Ba't dang thuTc C6si cho n s6' k h o n g &m
Cho n so'khong am: a^,a^,•••,«„ •
T a c 6 :
Dau dang thiJc xay ra <^ = = = a „
D I 2 I 6 : Cho a, b, c > 0 Chitng minh:
2) (a + fe + c) Da'u dang thiJc xay ra k h i nao ?
Da'u dang thiJc xay ra k h i nao ?
A p dung B D T Cosi cho hai so'khong am, ta c6:
Trang 17D(J 2.18: Cho a > 0, b > 0 Chitng minh: (a + bf +
Dau dang thiJc xky ra khi nao ? -A \
Tir (3) va (4) suy ra: {a + b) +
Dau ding thtfc xay ra <^ a = ^ = 1
>8
2.19: Cho a,b, c > 0 va a + b + c = L Chtfng minh:
>64
a A c Dau ding thiJc xay ra khi nao ?
Trang 18De 2.21: Cho a > b > 0 Chiang minh: a +
' DS'u dang thiJc xay ra khi nao ?
0, b > 0 Ap dung baft dang thiJc Cosi cho hai s6' du'dng, ta c6:
2 \fja4b <4a+^ =^2i/ab <4a + yfb
2^b-j^<(^a + S ) ^ ^ 4a^4b ^ '4a+4b
2 ^ 4a + y[b < '4ab (dpcm).i
D d 2 2 3 :
1) Cho a>\,b>\ Chtfng minh: a^Jb -X + b^a- \ 2) Cho ba s6' a, b, c doi mot khac nhau ChiJng minh:
{a-Vbf , ib^-cf {c + af {a-bf"^\b-cf • (c-a) 2 — >2
Trang 19lb Ic la
a — b b — c c — a
Sabc ' ia-b){b-c)(c-a)'
(3) (1) +(2) + (3): — + — + — + — + — + — > 2 6 + 2a + 2c c a c b a b ~
> ^ (4),
(5) (6)
Trang 20Tac6: 3a' + 3 ^ ' +Ab' >^l]3a\3b\Ab\
Mat khac: IJ^JA > ^ 3 3 3 = 3 (2)
(1) va (2) ^ 3a' + 7b' > 9ab^ (dpcm)
§ 3 BAT D A N G THUfC TRONG TAM G I A C
Cho tam giac ABC Dat: BC = a; AC = b; AB = c
Bi 2.26: Cho a, b, c la do dai canh ciia mot tam giic
ChiJng minh rkng: +b^ +c'^ < 2{ab + ba + ca)
GiSi
Theo tinh chat trong tam giac ta c6:
0 < a < + c < a(Z? + c)
Q><b<a^-c^b'^ <b{a^-c) Q<c<a^-b=>c^ <c{a^-b)
C6ng v6' theo ve ba ding thtfc tren ta dufdc:
a^ <2(a^ + fea + ca)
2.27: Cho a, b, c la do dai ba canh ciia mot tam giac
Chiang minhr^ng: abc>(a + b-c)(b + c-a)(a + c-b)
Giii
Tac6: a' >a^ -{b-cf ={a + b-c)(a + c-b)>0
39
Trang 21b"" >b^ -(a-cf =(a + b-c)(b + c-a)>0 '^c^ -(a-bf =ia-\-c-b)ib + c-a)>0
Nhan ve' theo ve'ba bat dang thiJc tren ta cd:
a'feV >ia + b-c)\a + c-b)\b + c-af
=^ abc>ia + b- c){b + c - a){a -^c-b)
2.28:
1) Cho x > O v ^ y > O C h u ' n g m i n h r ^ n g : - + - > — ^ D i n g
X y x + y
thtJc xay ra khi nao ?
2) Trong tam giac ABC cd chu vi 2p = a + b + c (a, b, c la do dai
ba canh tam giac) ChiJng minh rang:
D i n g thu-c xay ra khi
De 2.29: Cho a, b, c la do dai ba canh cua mot tam giac vdi chu vi 2p
Chiang minh rang: (p - a){p - b){p -c)< abc
{p-a){p-b){p-c)^ {a + b-c) (b + c-a) (a + c-b)
2 2 2 Mat khac: (a + b-c)(b + c-a)(a + c-b)< abc.( De 2.27 )
Trang 22Vay: {p - a){p - b){p - c) < abc
= 1 (dpcm)
§4 PHUdNG PHAP LAM TRQI
Dilng tinh chat cua bat dang thtfc de du'a bat dang thrfc can chiJng minh ve dang c6 the tinh diTdc theo phrfdng phap tinh tong hffu han
Gia su" can tinh tong: S„=U,+U^+U^+ + [/, + + 1 / „
Ta phan tich: — a,^ —
K h i d o :
S„ -a^) + (a^-a,) + (a,-a,) + + (a„ - ) = - a „ + , •
2.31: Cho n la so' nguyen thoa n > 1 ChiJng minh:
Trang 23<^ 1 > 0 Die 11 nay luon diing
Trang 24C6ng vd" theo v<S' n ba't ddng thitc tr^n ta duTdc:
2 2 2
5 + 2 5 + 4 ? ^ - + - ^ '
1 1 (2« + l ) ' ^ 2 2n + 2 ' ^ 2 '
Trang 25CHlTOfNG III: SO HOC
I.TINHCHIA HEX
1) Dinh nghia: Cho a, b la cac so nguyen Ta noi a chia bet
cho b neu ton tai mot so nguyen q sao cho:
a = bq
Ki hieu: a:b Khi do ta cung noi b chia het a va ki hidu: b|a
2) Tinh chat:
a) Neu: a chia het cho b va b chia he't cho c
thi: a chia he't cho c
b) Ne'u: a, b cung chia he't cho c
thi: a + b va a - b chia he't cho c
c) Ne'u: a chia he't cho c hay b chia het cho c
thi: a b chia he't cho c
3) Dau hieu chia he't:
a) Dau hieu chia he't cho 2: chi? so tan cung la chan ;
b) Dau hieu chia he't cho 3 (cho 9): tong cac chi? so chia
he't cho 3 (cho 9)
c) Dau hieu chia he't cho 4 (cho 8): hai (ba) so' cuo'i chia
he't cho 4 (cho 8)
d) Dau hieu chia he't cho 5 : chu" so' tSn ciing 1^ 0 hoSc 5
e) Dau hieu chia he't cho 11 • hieu giffa tdng cac chiJ so d
vi tri chan va tdng cac chff so'd vi tri le chia he't cho
11
II SO NGUYEN TO
1 Mot so nguyen du'dng du'cJc ggi la so nguyen to ne'u no chi
chia he't cho 1 va cho chinh no
• Nhtf vay theo dinh nghia nay, so' 1 la so nguyen to
Tuy nhi^n trong cic s6' nguyen t<5' tham gia l^m thiYa
s6' ciia mot tich, ngtfdi ta qui rfdc khong ki d6'n so' 1
2 S6' nguyen dufdng kh6ng la s6' nguySn t6' duTcJc goi Ik hdp
III U(5C CHUNG L(5N NHAT - BOI CHUNG NH6 NHXT
1) Binh nghia 1: Udc chung Idn nhS't (l/CLN) ciia hai s6' a b khong ddng thdi bkng 0 la s6' nguySn Idn nhat chia ha't ca a
vkb
Kihi6u: (a ,b) d^ chi UCLN cila a vk b
2) Binh nghia 2: c^c s6' nguyen a, b diTdc goi Ik nguySn t6' cing nhau n^'u: (a, b) = 1
3) Tinh chat: ra b) = ra \a + h\\= (\a + h\h)
4) Cach tim UCLN cua a vk b:
• Phan tich a va b thknh thiTa s6' nguyen t6'
• Lay tich cac thu'a s6' chung vdi s6' mu be nhat
5) Binh nghia 3: Boi chung nhd nhat (BCNN) cua hai s6' a va b
la so' h6 nhat chia he't cho ca a va b
Kijiieu: [a;^] de chi BCNr cua a va b
6) Cich tim BCNN cua a va b:
• Phan tich a vk b thanh t'lii'a so' nguyen t6'
• Lay tich cac thil'a s6' chung va rieng vdi s6' mu Idn nha't
IV.DONGDUTHLTC
1) Binh nghia: Cho m la s6' tif nhi^n khac 0 Hai s6' a, b dtfdc goi la ddng dtf modun m, ne'u trong phdp chia a vk b cho m
Trang 26ta duTdc cilng dif so'
Khi 66, ta k i hien: a = b (mod m)
2) a = b(mod m)-^ a — b + km vdi k la so' nguy6n
Khong the nho't 7 chit tho vao 3 chiec long, sao cho
moi long c6 khong qua hai chit tho
* Nhu" vay neu nho't 7 chit tho vao 3 chiec long thi it nha't phai
c6 mot chiec long c6 tu" 3 chu tho trd len
Trong do: n! = 1.2.3 n (vdi n6 iV*) va 0! = 1
3.2: Chifng minh rang tong 2p + 1 so tu" nhien lien tie'p chia he't
Trang 273.3: Cho n e N' Tim UCLN cua hai s6': 2n + 3 va n + 7
Gi§i
Ap dung tinh chat: (a,b)= {\a±b\,b)^{a,\a± b l)
Ta c6: (2n + 3;n + 7) = (l n - 4 l,n + 7) = (l n - 4 1,11)
Nhtfng 11 Ik so' nguyen to' nen so' can tim la 1 hoSc 11
Khi do: * Khi In - 41 la bpi so cvia 11 thi:
UCLN(2n + 3;n + 7) = 11
* Khi In - 41 khong la boi so' cua 11 thi:
UCLN(2n + 3;n + 7 ) = 1
3.4: Mot so' nguy6n du'Png N c6 dung 12 tfdc s6' (du'dng) khac
nhau ke ca chinh n6 va 1, nhiTng chi c6 ba tfdc so' nguyen t6' khac
nhau Gia su" tong cua cac ufdc so' nguyen to' la 20, tinh gia tri nho
nhat C O the cd ciia N
N nho nhat nen N - 2^5.13 = 260
3.5: Chitng minh r^ng c6 s6' nguyen drfdng chi chiJa cac chi? s6' 0
va chi? so 1 va so do chia het cho 1999
Xet 2000 so'nguyen du-png sau: 1; 11; 111; ; H L ^
2000 chuso'X
Cac s6'tr^n khi chia cho 1999, ton tai it nhat hai sd'chia cho
1999 cd cilng so'du" (nguyen ly Dirichlet) Goi 2 sd'dd la :
• Khi n = 1, A = 0: khdng la so' nguyen t6'
• Khi n = 2, A = 5: Ik so' nguyen t6'
• K h i n > 2 : T a c d : n - l > 2 va n ' + l > 1 0 n a n A l a
hdp s6'
Trang 283.8: Cho p va + 2 la hai s6' nguyen t6' Chitng minh: + 2
cung la s6' nguy6n to'
D i e u nay trai v d i gia thie't
V a y khong xay ra tru'dng hdp r = 1
• V d i r = 2 : T a c 6 / ? ' + 2 = 3 ( 3 m ' + 4 m ) + 4 + 2
= 3 ( 3 m ' + 4 m + 2)
- , V i : 3m^ + 4m + 2 > 1 nen + 2 la hdp so
D i e u nay trai v d i gia thie't
vay cung khong xay ra tru-dng hdp r = 2
T d m l a i : K h i p va /? V 2 la so' nguyen to t h i : p = 3
K h i d d : + 2 = 29 cung la so' nguyen to' (dpcm)
3.9: ChiJng minh rang:
1) V d i m o i so'nguyen du'dng n, phan so'sau la to'i gian: ^ ^ " ^ ^
V a y : 21n + 4 va 14n + 3 la hai so' nguyen to' cung nhau
td-c la: i l ^ i ± l la phan so t o i gian
14n + 3 2) Ta chiJng minh bang phan chiJng
G i a i su- rang V2 e g v d i ^ = ^ (viet du^di dang to'i gian nghia la
Trang 29Ta dung phufdng phap qui nap de chiJng minh
• Vdi n = 1: De thay: 1376^ = 1376(mod 2000)
Ttfc menh dd dung khi n = 1
• Gia su" menh de ddng tdi n = k Ttfc la:
Nghia la mdnh de diing tdi n = k + 1
Vay vdi moi s6'nguyen difdng n, ta cd: 1376" = 1376(mod2000)
Bi 3.12: ChiJng minh r^ng s6' jc = 10^" +10'" +10^" +1 chia het
cho 7, 11 va 13 neu n le Tim so' dif cua phdp chia x Ian liTdt cho 7,
l l , 1 3 v a l l l
Giii
.x = 10'"+10'"+10'"+l
TH,: Vdinle.tacd: * 10'" +1 = (10')" -(-1)"
chia het cho 10'-(-1) va: 10'-(-1)-1001 =
7.11.13-Do d6: 10'" + 1 chia het cho 7 ; 11 ; 13
Do dd 10'" +1 chia cho 111 du" 2 vdi moi neN
Tu-dng ttf 10'" +1 chia cho 111 dtf 2 vdi moi n e iV
Suy ra x chia cho 111 dtf 4 vdi moi neN
Tom lai: x chia cho 7 ; 11 ; 13 duT 0 n^'u n le ; dtf 4 na'u n chan
X chia cho 111 du" 4 vdi moi neN
Bi 3.13: Cho so' nguyen n > 1 ChiJng minh ring: n" -«'+«-1 chia he't cho (n-lf
Giii
Nhan x^t rkng vdi n = 2 thi : n" -n^ +n-l= (n-\f= 1 nan bai
, toan hien nhian dung
Bay gid ta xet n > 2:
Trang 30Do do tu" (1) ta s«y ra rang n" -n^ +n-\a het cho (n - 1 ) l
De^ 3.14: Xet ba so t\i nhien a, b, c th6a he thiJc: ^b^+c\
ChiJng minh r i n g neu a, b, c nguyen to' cung nhau thi a la so' le va
trong hai so' b, c c6 mot so' le va mot so' chfn
Giii
Gia su" a chfn
V i a, b, c nguyen to' cung nhau nen b, c le
• a chan chia he't cho 4
• h,c le =>b + c chia he't cho 2 va be khong chia he't cho 2
^ib + cf - 2bc khong chia he't cho 4
=^b'^ khong chia he't cho 4
Nhtfng theo giai thie't: = ZP^ + c^ V6 l i !
Vay a le ma a' = + =^ c6 mot sd' le va m6t so' chJn
^b,c CO mot so' le va mot s6' chfn (dpcm)
Y)i 1.15: Chu-ng minh rling tong cac binh phu-Ong cua ba so' nguyen
hen tie'p khong the la lap phu'dng cua mot so' nguyen dtfcfng
Giii
Tru'dc he't ta chitng minh neu n e Z thi:
• chia cho 3 dtf 0 hoac 1
* chia cho 9 dtf 0 hoac 1 hoac 8
That vay: Dat n = 3m + r{n,m eZ;r=- 0;±1)
* = (3m + rf - 9m' + 6mr + r '
r ' = 0 ;1 nen n'chiacho 3 du-Ohoac 1 (1)
• * ==(3m + r)^ = 2 7 m ^ + 2 7 m V + 9 m r ' + r \
= 0 ;1 ; - l nen chia cho 9 du" 0 hoac 1 hoac 8 (2)
* Goi ba so nguyen hen tie'p Ian lu-dt la a - 1 ; a ; a + 1
Ta CO (a - 1 ) ' + a' + (a + 1 ) ' = a' - 2a + 1 + a' + a' + 2a + 1
= 3 a ' + 2
Tu" (1) ta CO 3a' + 2 chia cho 9 drf 2 hoac 5 ma chia cho 9 du" 0
hoac 1 hoac 8 (tu" (2))
Do do 3a' + 2 khong the la lap phu'dng cua mot so'nguyan drfdng
3.16: ChiJng minh rang tich bo'n so'nguyen du-dng l i ^ n tie'p khong
the la so' chinh phu'dng
Giii
Giai siJ ton tai so' nguyen m de:
m ' = nin + l)(n + 2)(n + 3) <^ m ' = ( n ' + 3n)(n' + 3n + 2)
= k{k + 2) (vdi k = n ' + 3n ) Tacd: y t ' < ) t ( ^ + 2 ) < ( ^ + l ) '
Dieu nay mau thuan vdi k{k + 2) = m '
TO do suy ra dieu phai chifng minh
3.17: Tim so' nguyen n sao cho: n' + 2n' + 2n^ +n + l la mot so
chinh phu'dng
Trang 31Giii
Theo de bai ta c6: n* + 2n^ + 2n^ + n + 1 = (vdi m e Z )
^ A{n' + In" + 2n^ + rt + 7) = Am"
, Vay cac s6'c^n tlm la: n = 2, n = -3
f)i 3.18: Tim ba so' t\I nhien m, n, k d6i mot khac nhau sao cho
J- + i + - la mot so' tu" nhien
m n
Ta CO the gia su" r^ng m < n < k
Dat / = — + - + - vdi i la s6' tu* nhian
Trang 32* V d i i = 2 tl>i c6 I 2 < — =4> m < - =4> m = 1
m 2 ' L t i c d d d i l u kientrd thanh: 2 = 1 + - + ^ = ^ - + ^ = !
n k n k
M a m = l < n < k n e n n > 2 , A : > 3 - ^ - + | < ^ + ^ - 7 < l
n A: 2 3 6
Do d6 khong thoa dieu kien neu tren
Ket luan: m = 2, n = 3, k = 6 la ba so' can tim
3.19: T i m cac so' nguyen difclng m, n sao cho: 2m + 1 chia he't
cho n va 2n + 1 chia he't cho m
GiSi
Trirdc he't ta xet triTdng hdp \
Ta c6: m < 2n + 1 < 2m + 1 (vi 2n + 11a boi so' cua m)
2n + 1 = m hay 2n + \ 2m hay 2n + \ 3m
(vi 4m > 2m + 1 nen kh6ng the nhan 2n + 4 = 4 m , )
• 2n + 1 = m:
Ta c6: 2m + 1 = 2(2n + 1) + 1 = 4n + 3 chia he't cho n nen suy
ra 3 chia h6't cho n, v i the phai c6: n = 1 hoac n = 3
V d i m = 1 t h i n = 1
Do do ta thu du-dc: (n = 1, m = 3),(n = 3, m = 7), (m = n = 1) jsfhan xet rang vai tro ciia m va n nhu* nhau trong de bki, do vay khi
1 < m < « ta tim them du-dc: (m = 1, n = 3), (m = 3, n = 7)
D6 3.20: M o t so' chinh phu-dng cd dang abed Bie't ab-cd = l Hay
tim so' a'y
Dat abed = vdi a, b, c, d la cac chff s6' Ta phai cd a^O, ngoaira, do ab-cd = l n€n : e^O
T a c d : = 1 0 0 a i + ^ = 1 0 0 Q + l ) + ^ Suyra: - 1 0 0 = 1 0 1 ^ - ^ ( n + 1 0 ) ( « - 1 0 ) = 1 0 1 ^ V i n^cd bo'nchu'so'nen n < 100, do dd n + 10 = 101, hay n = 91 Vay 8281
Bi 3.21: T i m so' tu* nhien n = ab cd hai chu" so' sao cho:
Trang 33Ta lai bi^'t r i n g (x + yf > 4xy
Ket ludn: n = 91, n = 13, n = 63 la cac so' can tim
CHL/CfNGIV: GIA T R I L 6 N NHAT
VA GIA T R I NHO NHAT CUA HAM SO
Neu CO hang so'M sao cho:
N6u CO hing s6'm sao cho:
I DINH NGHIA Cho ham so' y = f(x) x^c dinh vdi x e D
thi m la gia tri nho nha't (GTNN) cua f(x)
K i hieu: m = min f{x)
Ghi chu: Tap xac dinh D la tap cac gia tri x sao cho f(x)
CO nghia
II C A C H T I M G T L N VA GTNN CUA H A M S d
1) Loai 1: Dilng tinh chat: |A| > A Dau "=" xay ra
2) Loai 2: Gia su' A, B la cac hang so, B > 0 va g(x) > 0
Cho: f{x) = A^ B Khi do: * f(x) Idn nha't ^ g(x) nho nhat
* f(x) nho nhat ^ g(x) Idn nhS't
B Cho: f(x) = A-
g(x) Khi do: * f(x) Idn nhat ^ gix) Idn nhat
* f(x) nho nhat ^ g(x) nho nhat
Trang 343) Loai 3: Dung dieu kien c6 nghiem cua phtfOng trinh bac
hai
Ghi chu: Cho ham so y = f(x) xac dinh tren tap D
Neu ph^dng trinh y = f{x)c6 nghiem
xeD ^ a<y<b
thi min f(x) = a va max f{x)^b
4) Loai 4: Diang cac linh cha't cua bat ding thiJc
4.1: TimGTNN cua : j = yjx-l-lyf^^ + ^Jx + l-6y[7^
Tac6: y = y]x-\-2y/x-2 +^lx + l-6yf7^
p i 4.2: Cho M = yjx + 4sjx -4 + ^x-A^x-A Tim x de M nho
nhS't va xac dinh gia tri nho nha't cua M
Gi^i
Dau "=" xay ra <^
Tac6: M = ^jx + Asfx^ + yjx-Ayjx - A
^ M = 4{X-A) + A^X-A^A + SJ{X-A)-A4I^^A
<^ 4 < ;c < 8 (thoa dieu kien)
Vay khi 4 < A: < 8 thi M dat gia tri nho nhat va min M = 4
4.3: Tim GTNN cua ham so: y = + -4;c + 4
Trang 354.4: Tim GTNN cua bieu tMc: A =
Trang 36Dd4.8: Tim GTNN cua ham so: y = -^'^^
; 2
Vay ta cd khi ;c = ± 1 thi f = - / - - i - = 0 <s^ y = -
• 2 2 ^ 4
3 Vay y dat gia tri nho nha't la: min y = —
Vay khi = - ( l ± thi y = 6 nen y dat gia tri nho nha't la: min y = 6
4.10: Cho y = (x l)(x 2)(x + 4)(x + 5) Tim x de y dat gid tri
nhd nha't Xdc dinh min y
71
Trang 37Vay khi x = - ( - 3 ± thi y dat gia tri nho nhat min y = - 9
4.11: Cho hai so' thiTc x, y thoa dieu kien x^ =1 Tim gia tri
Idn nhat va gid tri nho nha't ciia x + y
x = y =
Vdi x + y >-42
Dau " = " xay ra x = y Vay X + y dat gia tri nho nhat la
Vay max y = 2 dat du-dc khi ;c = ±sl2
DC- 4.13: Cho y = ^Jx^ +x + l + yjx^ -x + \ Tim x de y dat gia tri
nho nha't Xac dinh min y
V i x^+x + l = x' -x + l^
Trang 38D d 4.14: Cho y = — T i m x de y dat gia t r i Idn nhat Xac dinh
X + 1 max y
Trang 39Dat diTdc khi: x = y = —
Dau " = " xay ra ^ X = y - - Vay A dat gia tri nho nhat la 11
De 4.19: Tim gia tri Idn nha't ciia cac bieu thitc sau:
Vay khi X = y = 2 thi N dat gia tri Idn nha't la max N = 4
3) Dieu kien xac dinh la: x > l , y > 2,z > 3
Trang 40y^2 + (y-l)>2^2(y-2)^^l^-^<~
I 2 1
• =:3 + ( z - 3 ) > 2 V 3 ( z - 3 ) ^ ^ ^ ^ < ^
(2) (3)
Khi X = 2, y = 4, z = 6 thi (1), (2), (3) trd thanh dang thiJc Do d6
1 44 1
nen maxM = 69-66.—= — itng vdi mmz = —
min M = 69 - 66 = 3 tfiig vdi max z = 1
78
§1 PHaONGTRlNH BAG HAI - PHl/dNGTRlNH BAG BA
DINH LY VIET
I PHl/dNG TRINH BAC HAI ax^+bx + c = 0 {a^O)
Lap biet thitc: A = 6^ - 4ac
1) Neu A < 0 thi phifcfng trinh v6 nghiem
2) Neu A = 0 thi phiTdng trinh cd nghiem kdp:
X, =x^= — la
3) Nd'u A > 0 thi phifcfng trinh cd hai nghiem phan biet:
la
Trirdng hdp dac biet:
• Neu: a + + c = 0 thi phu^dng trinh cd nghiem :
phUcfn I tilnh bac hai
2) N6u phu-dng trinh: ax^ + fejc + c = 0 cd hai nghiem
x^;x^ {x^ < j:2)thi: a > 0 | : * ax^+bx + c<0<^ x^ <x<x^
X < X
* ax'' +bx + c>0^
79