2.1)Xác định được : tập xác định; tập giá trị; tính chẵn lẻ; khoảng đồng biến, nghịch biến; tính tuần hoàn; chu kỳ của các hàm số LG; Giá trị lớn nhất và giá trị nhỏ nhất. 2.2)Vẽ được đ[r]
Trang 1ÔN TẬP VÀ CẤU TRÚC MA TRẬN ĐỀ KIỂM TRA 1 TIẾT
CHƯƠNG I – ĐS> 11 NC
Năm Học 2012-2013
I MỤC TIÊU:
1 Về kiến thức:
1.1) Hiểu được các khái niệm về hàm số lượng giác
1.2) Biết được PTLG cơ bản và công thức nghiệm
1.3) Biết dạng và cách giải PT: bậc nhất, bậc hai đối với một hàm số LG; a.sinx + b.cosx = c ; phương trình thuần nhất bậc 2 ; Giải PTLG bằng các phép biến đổi lượng giác
2 Về kỹ năng:
2.1)Xác định được : tập xác định; tập giá trị; tính chẵn lẻ; khoảng đồng biến, nghịch biến; tính tuần hoàn;
chu kỳ của các hàm số LG; Giá trị lớn nhất và giá trị nhỏ nhất
2.2)Vẽ được đồ thị hàm số LG
2.3)Giải thành thạo PTLG cơ bản; biết sử dụng MTBT hỗ trợ
2.4)Giải được các PTLG đơn giản thường gặp
2.5)Giải các PTLG bằng các phép biến đổi lượng giác
II HÌNH THỨC KIỂM TRA: Tự luận
III KHUNG MA TRẬN ĐỀ KIỂM TRA:
Tên Chủ đề
(nội dung, chương)
Cấp độ thấp Cấp độ cao
Hàm số LG
Chuẩn KT, KN kiểm tra:
1.1 + 2.1
Chuẩn KT, KN kiểm tra:
1.1 + 2.1
Chuẩn KT, KN kiểm tra:
2.1
Số câu: 3
Số điểm: 4
Tỉ lệ: 40%
Số câu: 1
Số điểm: 1,5đ
Số câu: 1
Số điểm: 1,5đ
Số câu: 1
Số điểm: 1đ
Phương trình LG
Chuẩn KT, KN kiểm tra:
1.2 + 2.3
Chuẩn KT, KN kiểm tra:
2.3 + 2.4
Chuẩn KT, KN kiểm tra:
1.3 + 2.4
Chuẩn KT, KN kiểm tra:
1.3 + 2.5
Số câu :4
Số điểm:6
Tỉ lệ : 60%
Số câu:1
Số điểm:1đ
Số câu:1
Số điểm:2đ
Số câu:1
Số điểm:2đ
Số câu: 1
Số điểm: 1đ
Tổng số câu:7
Tổng số điểm: 10
Tỷ lệ: 100%
Số câu: 2
Số điểm: 2,5đ
Tỷ lệ: 25%
Số câu: 2
Số điểm: 3,5đ
Tỷ lệ: 35%
Số câu: 2
Số điểm: 3đ
Tỷ lệ: 30%
Số câu: 1
Số điểm: 1đ
Tỷ lệ: 10%
IV.ĐỀ KIỂM TRA VÀ HƯỚNG DẪN CHẤM
1.Đề kiểm tra.
ĐỀ 1
Câu 1 (4 điểm)
1/ Tìm tập xác định của hàm số: y cot(2x 3)
2/ Xét tính chẵn - lẻ của hàm số: ysin cosx 3xtanx
3/ Tìm giá trị lớn nhất ,giá trị nhỏ nhất của hàm số: y 4sin x cos2x 2
Trang 2Câu 2 (6 điểm) Giải các phương trình lượng giác sau:
1/ 2sinx 3 0
2/ 2 (2 2) cos 2x2cos 22 x0
3/ sin3x 3 cos3x 2sin x
4/ 4cos2x3tan2x 4 3 cosx2 3 tanx 4 0
ĐỀ 2
Câu 1 (4 điểm)
1/ Tìm tập xác định của hàm số:y tan(x 6)
2/ Xét tính chẵn - lẻ của hàm số:ysin3xcosxcotx
3/ Tìm giá trị lớn nhất ,giá trị nhỏ nhất của hàm số: y4cos2x 3cos 2x
Câu 2 (6 điểm) Giải các phương trình lượng giác sau:
1/ 2cosx 3 0
2/ 2sin 22 x (2 2)sin 2x 2 0
3/ 3 cos3xsin 3x2cosx
4/
3cos 4sin cos sin
0 2cos 1
x
2.Đáp án và hướng dẫn chấm:
Câu 1.1/
1,5 điểm Hàm số xác định khi : 2x k
3
TXĐ : D=R\
k , k Z
0,5 0,5 0,5
Câu 1.2/
1,5 điểm TXĐ : D = R\ 2 k k,
là tập đối xứng (1)
3
3
Từ (1) và (2) suy ra hàm số đã cho là hàm số chẵn.
0,5
0,5 0,5 Câu 1.3/
1,0 điểm
TXĐ : D = R
2
Ta có : 1 cos2x 1 3 3cos2x 3 5 2 3cos2x 1
Vậy :
0,25 0,25
Trang 3khi cos2x 1 2x k2 x k , k Z
2
R
khi cos2x 1 2x k2 x k , k Z
0,25 0,25
Câu 2.1/
1,0 điểm 2sin x 3 0 sin x 2 3 sin 3
2
3
k
0,5
0,5
Câu 2.2/
2,0 điểm
2
2 os2
2
c x
c x
k
1,0
1,0
Câu 2.3/
2,0 điểm sin3x 3 cos3x 2sinx
3
0,5
0,5 0,5
0,5 Câu 2.4/
1,0 điểm
ĐK: cos x 0.
Khi đó : (*) (4cos 2 x 4 3 cos x 3) (3tan 2 x 2 3 tan x 1) 0
(2cos x 3) 2 ( 3 tan x 1) 2 0
2
2
x x
x x
0,25 0,25 0,25
0,25
Trang 4
3 cos
2 3 tan
3
x x
2 6 6
6
x k k
Lưu ý: Học sinh làm cách khác nếu đúng vẫn cho điểm tối đa.