1. Trang chủ
  2. » Luận Văn - Báo Cáo

Ứng dụng kỹ thuật điều chế lọc đa tần kết hợp với kỹ thuật cân bằng trong các hệ thống thông tin băng rộng

200 35 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 200
Dung lượng 14,22 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Serial to parallel Multicarrier Modulator IDFT Add cyclic prefix, parallel to serial convert D/A converter Parallel to serial Multicarrier Demodulator DFT Remove cyclic prefix, serial t

Trang 6

-

Trang 11

-xy

Trang 18

-r t 2 t

Trang 19

Trang 20

2 2

2 / h 2 y

2 / h 2 x

e2

1)

h

(

p

e2

1)

=

2 y 2

x hhh

htan

0r0

0re

r)(

p

2

2 / 2 r 2

=

2

1)(

p

y

x jh h A

2 h 2 y

2 h 2 x

e 2

1 h

p

e 2

1 h

=

Trang 21

( ) 2

y 2

x hhAh

+

0r0

0r

ArIe

rr

r A 2

2 2 2

2

22σ

0re

r

1r

p

2 2

2 ) log(

σ

Trang 24

=

+

=

)t(nd)t(

Trang 25

ng(t nT)S

)t(x

( )

( )tnnTTN

itgsT

N

icNT

tnd)nTt

(gs)(c

)t(n)nTt(gs)t(c

)t(n)t(x)t(c)t(y

n n uN

0 i

n n

n n

∞ +

( )kTnsh

kTnGsc

kTnTnN

ikgsT

N

icNT

kTyy

T T

n n uN

0 i k

N

1c0cN

T

cT

1) u 1)x(v (uN T T

T

p0

00

0Q

000

0

p

00

Q0

00

00p

G

+ + +

s

ss

Trang 26

TN

1N2gTN

1N1g

TN

2vg

TN

22gT

N

21g

TN

1vg

TN

12gT

N

11g

Trang 27

=

φ ∂ −τα

t ( j

j

l.e [t ])

=ττ

−τ

0 l

j l

l.x(t t ).e w(t)d

)

t(c)

(x

≤σ

≥α

ασ

α

=

α +

00

0

AIe

)

(

A 2

2 2 2

τ

Trang 29

Trang 31

[ ]T

N k 2

k 1 k

k

n k N

k k

k T k k

k

k T k k k T

T k k T k 2

k

2

k Ex Ey y 2Ex ye

ω

Trang 32

[ ] [ ]T

N k k 2

k k 1 k k k k k

k N k 1 k N k k N k

N k 1 k 2

k 1 k 2

1 k k

1 k

N k k 2

k k 1

k k 2

yyyyyy

yy

yyy

yy

yy

yyy

yy

Ey

=

Trang 33

N 1

ξω

Trang 34

( ) ( ) ( )n x n g n n ( )n h ( )n

( ) ( ) ( ) ( ) ( ) ( )n d n dˆ n d n [x n g n n ( )n h ( )n ]

Trang 36

( )t =∑x(k)h(t−kT)+v(t)y

h

)n(v)k(h)kn

Trang 38

0

0

)2l(h

)0(h0

0

)1l(h

)1(h)0(hH

h

h h M

M n y n , ,y n M 1

)n(v)n(xH)n

2 ( ) 1 (

) 2 ( )

0 ( )

1 (

) 1 ( )

1 ( )

0 (

r M

r M

r

M r r

r

M r r

r R

h h

H M

0 n ,g n , ,g ng

n

Trang 41

M , f 1 M 1

,

M

P0

00

00

0PR

I

B

B

A

A

I

1 M , f H 2

L ZF

H

ZF

)1L

(

h

)1L(

Trang 43

h

Trang 44

2 1 θλ

−1

1

)1L(

=

=

=

1mLd)n(

b

0d)

n(

0d)

n(P

1 M

,

b

1

1 M

,

f

) (

ˆ d

h

)n(u)n(

)'d(hˆ)

Trang 47

n k

π

dNe

F

N2

Trang 48

n k 1 n Bn n

k 1

Trang 49

0 min

2

dNe

F

Nln

2

Texpn

e

E

Trang 51

Trang 52

Trang 53

( ) 2p 2R 0

J ωN =− N + NN N =ω

ω

Trang 54

= λ

< N

1 i i20

Trang 55

n,en,en

J

≤ ≤

Trang 56

( )n R ( )n 1 y ( ) ( )n y n

Trang 57

−λ

n

1nRnyny1nR1nR

1

n

R

1 NN T

N N 1

NN 1

NN 1

n

1 NN N

µ+λ

ny1nRn

k

1 T

1

−+

Trang 62

Serial to

parallel

Multicarrier Modulator (IDFT)

Add cyclic prefix, parallel to serial convert

D/A converter

Parallel to

serial

Multicarrier Demodulator (DFT)

Remove cyclic prefix, serial to parallel convert

A/D converter Detector

Channel

noise

Trang 63

=

π

Trang 64

kn ) N / 2

Trang 65

ν ν

ννν

N / nk 2 j n

Trang 67

jdte

*fT

)fTsin(

.T.e)ff

Trang 68

)f

fif(csin.T.ef

fif

)f

fifsin(

.T.e

)

(

fi f j f

fi f

j

i

−π

=

−π

−π

− π

=

ν

M points IDFT

M points DFT

Trang 71

Trang 72

i

j

i j i

=

σ

i j

2 i

j 2 Aj 2

)fB.δ

Trang 73

=δ+

f

f)ji(csin)f

Bj i

2 2

1 2

=

σ

SNR/

)

f(g

a 2

2σ+σ

σδ

=

( SNR)

Q)SNR

2

1dxe

2

1)

y

(

Q

y 2 /

x2

Trang 77

?

Trang 79

;1M, ,1,0ne

)

n(hM

Trang 80

z(H

−∞

=

− +∞

1 M ( n

nM n

nM h(nM 1).z z h(nM M 1).zz

)

nM(h)

z(H

M / ni 2 j ) i ( k

k

M / ) kM n ( ni 2 j )

i ( 1

M 0 i

e)

k(AM

1)kMn(h)

n(x

e)

kMn(h)

k(AM

1)n(x

Trang 81

l(x

e)

k(AM

1)kl(h)

l(x

) m ( k

) m ( )

m (

M / im 2 j ) i ( k

) m ( )

m (

∞ +

−∞

=

π

∞ +

kn N

2 j k n

1 N 0 n

kn N

2 j k k

e.XN

1x:IDFT

exX

:DFT

Trang 82

↑γ

Trang 83

)n(hM

1)n('g

*))n(h()n(g

i ) n ( M

2 j )

i (

) i ( )

i (

γγ

γ

γ

=

−γ

=

γ

M, ,2,1n,.e

)nh(MM

1 (n)g

M, ,2,1n,].e

)M-h[-(nM

1 (n)g

)M-(n

g (n)g

M / ni j2 (i)

M / ) M - (n j2 (i)

(i) (i)

γ

=

M, ,2,1n,.e

)1-h(nM

1 (n)

Trang 84

=

π γ

M / ni 2 j M

1 n

) i ( )

i (

e)

1n(h)

nkM(yM

1)n(g)

nkM(y)

k(B

=

π

=

− γ

=

+ π

−+

=

−+

=

M 1 t

1 0 l

M / ti 2 j )

i (

M 1 t

1 0 l

M / ) t lM ( 2 j )

i (

e)

1tlM(h)

tM)lk((

yM

1)k(B

e)

1tlM(h)

tlMkM(yM

1)k(B

=

+ π +

− γ

=

+

0 p

M / ) 1 p ( i 2 j ))

1 p ( M ) l k ((

1 0 l

) i (

e)

plM(h.y

M

1)k(B

M / ) 1 p M ( 2 j M / ) 1 p ( 2 j

− +

− γ

M / 1 p M ( 2 j ))

1 p ( M ) k ((

1

0 l

)

e.)plM(h.y

M

1)k(B

MpointsDFT

Trang 85

M points IDFT

Trang 86

)knM(g

n()knM(g

Trang 87

γ

Trang 89

γ

Trang 92

↑ ↓

Trang 95

1 L 0 p

) i ( )

i ( overall

) i (

)pn(h)

p(c

*)n(g)k(h

1 L 0 p

) i ( )

i ( overall

) i (

)pnkM(h)

p(c)n(g)k(h

0 n

1 L 0 p

M / ) p n nM ( 2 j M

/ ni 2 j overall

) i (

e)

pnkM(h)

p(ce

)

1n(hM

1)k(h

1 L 0 p

M / pi 2 j overall

) i (

e)

pnkM(h)

p(c)1n(hM

1)k(h

1 M

/ n 2 j 1

1 M 1 1

1 1

) i ( )

i (

r (k) g (n ).n(kM n ) h(n 1).e n(kM n )

Trang 96

(

e(i) = (i) − (i)

) i ( )

i ( 2

)

i

(

)k(y)k(dE)k(e

)]

1N(w), ,2(w),1(w),0(w[

wFFi = FFi FFi FFi FFi FF−

)]

N(w), ,2(w),1(w),0(w[

wFBi = FBi FBi FBi FBi FB

)]N(w), ,1(w),0(w),1N(w), ,1(w),

i ( )

i ( )

i ( FF )

i ( )

i ( )

k

(

B(i) (overalli) (i) (ri)

Trang 97

(

y(i) = iT (i)

T FB )

i ( )

i ( )

i ( FF )

i ( )

i ( )

i ( w

, w 2

i DFE MMSE min E d (k) y (k)

i FF i

=

)k(xw)k(A)k(y)k(A)k

(

i

) i ( )

i ( )

i ( )

* ) i ( H

) i (

~

H i )

i (

* ) i ( )

(

e(0i) = (i) −∆ − H0i

H i 0 H

) i (

* ) i (

, ) i ( xx ) i (

) i ( i 0 H ) i (

* ) i ( 0 )

i (

)k(x.w)

k(x)k(AE)k(x)

Trang 98

n(h

)k(A)1k(n)1nk(A)

n(h

)k(A)k(n)nk(A)

n(h

E

p

* ) i ( 1

Noverall

0 n

FF )

i ( r FF

) i ( eq

* ) i ( 1

Noverall 0 n

) i ( r )

i ( eq

* ) i ( 1

Noverall 0 n

) i ( r )

i ( eq

i ( )

i

(

) i (

)pjk(A)

tik(A

2 A i

eq

1 N

0 n

* ) i ( )

i ( r )

i ( i eq

* ) i ( )

i

(

) i (

eq

)

i(h

)k(A)

ik(n)ink(A)

n(hE

)k(A)

ik(B

FF i

eq 2 A

i eq 2 A

i eq 2 A

)

i

(

FB FF

) i (

) i (

) i (

0

0

)1N(h

)1(h

)(h

p

× +

∆σ

∆σ

=

)i(Rxx

{x (k).x (k)}

E)

i

(

R = (i) (i)H

Trang 99

)1k(A

)1Nk(B

)1k(B

)k(B

i

(

) i ( FF )

i

(

) i (

) i (

FB FF FB FF

BD

CAR

+

× +

eq eq 2

A

* 1

N 0 p eq

1 N 0 t eq

* j

N, ,2,1li)

lit(h)

t(h

)p1ik(A)

p(h.)t1ik(A)

t(hE

)1lk(B)

lik(BEA

eq

eq eq

=

−+σ

li(

Trang 100

[ ] { }

FB FF

eq 2 A

*

* 1

N 0 t eq

* j

N, ,2,1lN, ,2,1i)

ijD(h

)1jDk(A.)t1ik(A)

t(hE

)1jDk(B)

1ik(BEC

eq

=

=

−+σ

)1Dk(A

)1Nk(n

)1k(n

)k(n

E

r r

xxnoise

) N N ( ) N N ( xxnoise

FB FF FB FF

00

0ER

+

× +

γ

=

− + π

− π

−σ

=

−+

−σ

=

−+σ

M / ) j l ( 2 j 1

* 1 2

n

M 1 n

M / ) j l n ( 2 j 1

* M / n 2 j 1 2

n

M 1 n

1

* ) i ( 1 ) i ( 2 n

M 1 2

2

* 2

* ) i ( M

1 n

1 1

) i (

1 1

e)

1jln(h)

1n(h

e)

1jln(h.e

)

1n(h

)jln(g)

n(g

)jnkM(n)

n(g.)lnkM(n)

n(g)

jk(

Trang 101

[ ]) 1 ) xx i

Trang 102

=

−M 0 n

M / in 2 j ) i ( )

i ( ) i ( 1 ) i ( 1

1M, ,1,0n)

n(h.e.)n(h.)n(h)

nn(cψ

1M, ,1,0i)

l(c.e1 L 0 l

M / li 2 j )

i

= π

1M, ,1,0i

Trang 103

=

=M 10 n

) i ( ) i ( )

=

− γ

=

− π π

) i ( overall

1 M 0 n

M / ) n kM ( 2 j M

/ ki 2 j )

i

(

overall

)1nkM(h)

n(hM

1)k(h

e)1nkM(h.e

)n(hM

1)k(h

γγ

M points

wFF,0(k)

 (0) (k- ∆ )

Trang 104

{ (i) (i) 2}

w , w 2

i

DFE

MMSE min E b (k) a (k)

i FF i

=

M points IDFT

Trang 106

x = (i) −

)z(F

1]1)z(F[1

1)

z(A

)z(X) i

−+

nz)

n()

z(F

)k()k(v.L2)k(A)L2mod(

)]

k()k(A[)k('

)z(F

)z(V.L2)z(A)z('X

]1)z(F).[

z('X)z(V.L2)z(A)z('X

) i (

) i (

=

Trang 107

z(

)

k

( = (i) +

)L2mod()]

k(v.L2)k(A[)L2mod(

Trang 109

{ } {2 2}

)k(y)k(AE)

-)k(x.w

i (

k(x.w

k 1

k = +µ

− +

µ

S)

NN(

20

+

<

µ

<

Trang 110

)m(e.)

k

(

∆k

w

)m(x.w)m(A

Trang 111

k(x)

k(K.)1k(P

k(Kw

w

)k(x.w)k(

k(x

)k()

k

(

K

)k(x)

1k

1

* 1

−λ

=

ξ+

Trang 113

n n

* n N

Trang 114

{ 2 }

1 n 1 n 1

1 n 1 n N

1

E − = θ∈ θ−θ − −− θ−θ − ≤σ −

σθ

n 2 1 n n n T n n 1 n 1

1 n 1 n n N

≤λ

1

n n

n

n n

σ

2 n 2 1 n n 2

n =α σ +β ρ

λ

Trang 115

2 2

1

n + δ ≤ρ

T 1 n n

n =y −θ − xδ

2 n n 2 n 2 1 n n

2

n

n

* n n n

1

n

n

n n n

1 n T n

* n 1 n n 1 n n

n

G.1

)

1(

)

1

(

.x.P

G.1

P.x.x.P.P

1

1

P

λ+λ

δλ

−λ

−ρλ+σ

λ

−λ

n n max

n n n

n n n

n n

n max

n

max n 0

n n

* n 1 n T n n

0)1G(1if

0)1G(1if])1G(1

G1

[G11

1Gif

2

)1(

0if

),min(

x.P.xG

δ

σ

−γ

>

−µ

+

−µ

+

Trang 116

θθ

Trang 117

S)v,A()

v,A,(z

Trang 118

)(

N ρΘ

S )

T n 1 N 2

n 1 N 2 N

)v,A(x.a

:C

)v,A,(za:C)

∈θ

=

ρ

≤θ

∈θ

=

ρ

Θ

)(

N ρΘ)

N ρΘ

0l);

()

Trang 119

D

1 D _ D D

1 D

D 1 D D

N

c00

0

c

c0

0c

c

cc

00

c

C

)ws.C(

zn =θT TN n + n

H)w,s(w

.s

N ρ

Θ

H ) w ,

s

(

2 2 T 0 N 1 N 2

−θ

∈θ

=

ρ

Θ

Trang 120

ν+

=D i

n i n i

n c au

ρ

− ν

N N i

) 1 ( i K

)

1

(

e

a

2 N

H N )

1

(

e.C.I.K

)

1N2(C.C

− ν

=

θ

θ ∈ ΘN(ρ))

(

N ρ

Θ

2 2 2 ) 2 ( 0 2 2 a

2(cos

0 ) 2 ( N

)

2

(

e

=

ε

0 H N 1

0 2 2 a

2 N

H N )

2

(

e.C.I)2(cos

C.C

− ν

ρ+

=

θ

Trang 122

i

Q i

i

N

)1/0(P

ri=∆ U /Q

Trang 123

i,r)

p1.(

p.1k

1M.k

Lk

1k(

)!

1M(1

k

1M

Q

N

k M k

N p (1 p)

k

M)

k Q

/

1k

1M)1

k N

, Q / U

, Q / U

i

)p1.(

p.1k

1M)

k,1/0(P

)1/k(P)

k,1/0(P

r

Q i i

i Q Q

i i

k

Lk)k,1/0

Trang 125

0U,1Q

Trang 126

N (k) r pP

M 1 i

i j { 1 , 2 , , M } \ { i i , , i }

j i

i i

1 k M 1 i N

1 2 1 1

Q(k) p p p (1 p )P

M

1 L

k

Np

)k(P)Lk(r

Q

i i Q Q

/ R Q

Q / R

1 i

R rp

N

Trang 127

LNLN

k =δ +σ −ρ

Trang 128

~

ip

~

→∞

)t(Q)

1()1t

1()1t

i

i i

i

ζ

−+

r)t(p

~

i

) t ( i

i ≈

)t

(

p

Trang 135

×

Trang 145

γ

Trang 147

γ

Trang 148

γ

Trang 151

[1] J.G Proakis, "Digital Communication", McGraw-Hill, 1995 - (book)

Trang 153

ç

Ngày đăng: 09/02/2021, 15:58

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm