Serial to parallel Multicarrier Modulator IDFT Add cyclic prefix, parallel to serial convert D/A converter Parallel to serial Multicarrier Demodulator DFT Remove cyclic prefix, serial t
Trang 6-
Trang 11-xy
Trang 18-r t 2 t
Trang 19
Trang 20
2 2
2 / h 2 y
2 / h 2 x
e2
1)
h
(
p
e2
1)
=
2 y 2
x hhh
htan
0r0
0re
r)(
p
2
2 / 2 r 2
=
2
1)(
p
•
y
x jh h A
2 h 2 y
2 h 2 x
e 2
1 h
p
e 2
1 h
=
Trang 21( ) 2
y 2
x hhAh
+
−
0r0
0r
ArIe
rr
r A 2
2 2 2
2
22σ
0re
r
1r
p
2 2
2 ) log(
σ
Trang 24=
+
=
)t(nd)t(
Trang 25ng(t nT)S
)t(x
( )
( )tnnTTN
itgsT
N
icNT
tnd)nTt
(gs)(c
)t(n)nTt(gs)t(c
)t(n)t(x)t(c)t(y
n n uN
0 i
n n
n n
∞
−
∞ +
( )kTnsh
kTnGsc
kTnTnN
ikgsT
N
icNT
kTyy
T T
n n uN
0 i k
N
1c0cN
T
cT
1) u 1)x(v (uN T T
T
p0
00
0Q
000
0
p
00
Q0
00
00p
G
+ + +
s
ss
Trang 26TN
1N2gTN
1N1g
TN
2vg
TN
22gT
N
21g
TN
1vg
TN
12gT
N
11g
Trang 27=
φ ∂ −τα
t ( j
j
l.e [t ])
=ττ
−τ
0 l
j l
l.x(t t ).e w(t)d
)
t(c)
(x
≤σ
≥α
ασ
α
=
α +
−
00
0
AIe
)
(
A 2
2 2 2
τ
Trang 29∑
Trang 31[ ]T
N k 2
k 1 k
k
n k N
k k
k T k k
k
k T k k k T
T k k T k 2
k
2
k Ex Ey y 2Ex ye
ω
Trang 32[ ] [ ]T
N k k 2
k k 1 k k k k k
k N k 1 k N k k N k
N k 1 k 2
k 1 k 2
1 k k
1 k
N k k 2
k k 1
k k 2
yyyyyy
yy
yyy
yy
yy
yyy
yy
Ey
=
≡
Trang 33N 1
∂
ξω
Trang 34( ) ( ) ( )n x n g n n ( )n h ( )n
( ) ( ) ( ) ( ) ( ) ( )n d n dˆ n d n [x n g n n ( )n h ( )n ]
Trang 36( )t =∑x(k)h(t−kT)+v(t)y
h
)n(v)k(h)kn
Trang 380
0
)2l(h
)0(h0
0
)1l(h
)1(h)0(hH
h
h h M
M n y n , ,y n M 1
)n(v)n(xH)n
2 ( ) 1 (
) 2 ( )
0 ( )
1 (
) 1 ( )
1 ( )
0 (
r M
r M
r
M r r
r
M r r
r R
h h
H M
0 n ,g n , ,g ng
n
Trang 41M , f 1 M 1
,
M
P0
00
00
0PR
I
B
B
A
A
I
1 M , f H 2
L ZF
H
ZF
)1L
(
h
)1L(
Trang 43h
∑
∑
Trang 442 1 θλ
−1
1
)1L(
=
=
=
1mLd)n(
b
0d)
n(
0d)
n(P
1 M
,
b
1
1 M
,
f
) (
ˆ d
h
)n(u)n(
)'d(hˆ)
Trang 47n k
π
dNe
F
N2
Trang 48n k 1 n Bn n
k 1
Trang 490 min
2
dNe
F
Nln
2
Texpn
e
E
Trang 51•
Trang 52•
Trang 53( ) 2p 2R 0
J ωN =− N + NN N =ω
∂
∂
ω
Trang 54= λ
<α
< N
1 i i20
Trang 55n,en,en
J
≤ ≤
Trang 56( )n R ( )n 1 y ( ) ( )n y n
Trang 57−
−
−λ
−
n
1nRnyny1nR1nR
1
n
R
1 NN T
N N 1
NN 1
NN 1
n
1 NN N
µ+λ
ny1nRn
k
1 T
1
−+
Trang 62Serial to
parallel
Multicarrier Modulator (IDFT)
Add cyclic prefix, parallel to serial convert
D/A converter
Parallel to
serial
Multicarrier Demodulator (DFT)
Remove cyclic prefix, serial to parallel convert
A/D converter Detector
Channel
noise
Trang 63=
π
Trang 64kn ) N / 2
Trang 65ν ν
ννν
N / nk 2 j n
Trang 67jdte
*fT
)fTsin(
.T.e)ff
Trang 68)f
fif(csin.T.ef
fif
)f
fifsin(
.T.e
)
(
fi f j f
fi f
j
i
∆
−π
=
∆
−π
∆
−π
− π
=
∆
ν
M points IDFT
M points DFT
Trang 71∆
Trang 72i
j
i j i
=
σ
i j
2 i
j 2 Aj 2
)fB.δ
Trang 73=δ+
f
f)ji(csin)f
Bj i
2 2
1 2
=
σ
SNR/
)
f(g
a 2
2σ+σ
σδ
=
( SNR)
Q)SNR
2
1dxe
2
1)
y
(
Q
y 2 /
x2
Trang 77?
Trang 79;1M, ,1,0ne
)
n(hM
Trang 80z(H
−∞
=
− +∞
1 M ( n
nM n
nM h(nM 1).z z h(nM M 1).zz
)
nM(h)
z(H
M / ni 2 j ) i ( k
k
M / ) kM n ( ni 2 j )
i ( 1
M 0 i
e)
k(AM
1)kMn(h)
n(x
e)
kMn(h)
k(AM
1)n(x
Trang 81l(x
e)
k(AM
1)kl(h)
l(x
) m ( k
) m ( )
m (
M / im 2 j ) i ( k
) m ( )
m (
∑
∑
∑
∞ +
−∞
=
π
∞ +
kn N
2 j k n
1 N 0 n
kn N
2 j k k
e.XN
1x:IDFT
exX
:DFT
↑
↑
↑
Trang 82
↑γ
Trang 83)n(hM
1)n('g
*))n(h()n(g
i ) n ( M
2 j )
i (
) i ( )
i (
+γ
−
γγ
γ
γ
=
−γ
=
⇒
γ
=γ
M, ,2,1n,.e
)nh(MM
1 (n)g
M, ,2,1n,].e
)M-h[-(nM
1 (n)g
)M-(n
g (n)g
M / ni j2 (i)
M / ) M - (n j2 (i)
(i) (i)
γ
=
M, ,2,1n,.e
)1-h(nM
1 (n)
Trang 84=
π γ
M / ni 2 j M
1 n
) i ( )
i (
e)
1n(h)
nkM(yM
1)n(g)
nkM(y)
k(B
=
π
=
− γ
=
+ π
−+
−
−
=
−+
−
−
=
M 1 t
1 0 l
M / ti 2 j )
i (
M 1 t
1 0 l
M / ) t lM ( 2 j )
i (
e)
1tlM(h)
tM)lk((
yM
1)k(B
e)
1tlM(h)
tlMkM(yM
1)k(B
=
+ π +
−
−
− γ
=
+
0 p
M / ) 1 p ( i 2 j ))
1 p ( M ) l k ((
1 0 l
) i (
e)
plM(h.y
M
1)k(B
M / ) 1 p M ( 2 j M / ) 1 p ( 2 j
− +
−
−
− γ
M / 1 p M ( 2 j ))
1 p ( M ) k ((
1
0 l
)
e.)plM(h.y
M
1)k(B
↓
↓
↓
MpointsDFT
Trang 85
M points IDFT
Trang 86)knM(g
n()knM(g
Trang 87γ
Trang 89γ
Trang 92↑ ↓
Trang 951 L 0 p
) i ( )
i ( overall
) i (
)pn(h)
p(c
*)n(g)k(h
1 L 0 p
) i ( )
i ( overall
) i (
)pnkM(h)
p(c)n(g)k(h
−
0 n
1 L 0 p
M / ) p n nM ( 2 j M
/ ni 2 j overall
) i (
e)
pnkM(h)
p(ce
)
1n(hM
1)k(h
1 L 0 p
M / pi 2 j overall
) i (
e)
pnkM(h)
p(c)1n(hM
1)k(h
1 M
/ n 2 j 1
1 M 1 1
1 1
) i ( )
i (
r (k) g (n ).n(kM n ) h(n 1).e n(kM n )
∆
∆
Trang 96(
e(i) = (i) − (i)
) i ( )
i ( 2
)
i
(
)k(y)k(dE)k(e
)]
1N(w), ,2(w),1(w),0(w[
wFFi = FFi FFi FFi FFi FF−
)]
N(w), ,2(w),1(w),0(w[
wFBi = FBi FBi FBi FBi FB
)]N(w), ,1(w),0(w),1N(w), ,1(w),
i ( )
i ( )
i ( FF )
i ( )
i ( )
k
(
B(i) (overalli) (i) (ri)
Trang 97(
y(i) = iT (i)
T FB )
i ( )
i ( )
i ( FF )
i ( )
i ( )
i ( w
, w 2
i DFE MMSE min E d (k) y (k)
i FF i
=
)k(xw)k(A)k(y)k(A)k
(
i
) i ( )
i ( )
i ( )
* ) i ( H
) i (
~
H i )
i (
* ) i ( )
(
e(0i) = (i) −∆ − H0i
H i 0 H
) i (
* ) i (
, ) i ( xx ) i (
) i ( i 0 H ) i (
* ) i ( 0 )
i (
)k(x.w)
k(x)k(AE)k(x)
Trang 98n(h
)k(A)1k(n)1nk(A)
n(h
)k(A)k(n)nk(A)
n(h
E
p
* ) i ( 1
Noverall
0 n
FF )
i ( r FF
) i ( eq
* ) i ( 1
Noverall 0 n
) i ( r )
i ( eq
* ) i ( 1
Noverall 0 n
) i ( r )
i ( eq
i ( )
i
(
) i (
)pjk(A)
tik(A
2 A i
eq
1 N
0 n
* ) i ( )
i ( r )
i ( i eq
* ) i ( )
i
(
) i (
eq
)
i(h
)k(A)
ik(n)ink(A)
n(hE
)k(A)
ik(B
FF i
eq 2 A
i eq 2 A
i eq 2 A
)
i
(
FB FF
) i (
) i (
) i (
0
0
)1N(h
)1(h
)(h
p
× +
−
∆σ
∆σ
=
⇒
)i(Rxx
{x (k).x (k)}
E)
i
(
R = (i) (i)H
Trang 99)1k(A
)1Nk(B
)1k(B
)k(B
i
(
) i ( FF )
i
(
) i (
) i (
FB FF FB FF
BD
CAR
+
× +
eq eq 2
A
* 1
N 0 p eq
1 N 0 t eq
* j
N, ,2,1li)
lit(h)
t(h
)p1ik(A)
p(h.)t1ik(A)
t(hE
)1lk(B)
lik(BEA
eq
eq eq
=
−+σ
li(
Trang 100[ ] { }
FB FF
eq 2 A
*
* 1
N 0 t eq
* j
N, ,2,1lN, ,2,1i)
ijD(h
)1jDk(A.)t1ik(A)
t(hE
)1jDk(B)
1ik(BEC
eq
=
=
−+σ
)1Dk(A
)1Nk(n
)1k(n
)k(n
E
r r
xxnoise
) N N ( ) N N ( xxnoise
FB FF FB FF
00
0ER
+
× +
−
γ
=
− + π
− π
−σ
=
−
−+
−σ
=
−+σ
M / ) j l ( 2 j 1
* 1 2
n
M 1 n
M / ) j l n ( 2 j 1
* M / n 2 j 1 2
n
M 1 n
1
* ) i ( 1 ) i ( 2 n
M 1 2
2
* 2
* ) i ( M
1 n
1 1
) i (
1 1
e)
1jln(h)
1n(h
e)
1jln(h.e
)
1n(h
)jln(g)
n(g
)jnkM(n)
n(g.)lnkM(n)
n(g)
jk(
Trang 101[ ]) 1 ) xx i
Trang 102=ψ
=
−M 0 n
M / in 2 j ) i ( )
i ( ) i ( 1 ) i ( 1
1M, ,1,0n)
n(h.e.)n(h.)n(h)
nn(cψ
1M, ,1,0i)
l(c.e1 L 0 l
M / li 2 j )
i
= π
1M, ,1,0i
Trang 103=
=M 10 n
) i ( ) i ( )
=
− γ
=
− π π
) i ( overall
1 M 0 n
M / ) n kM ( 2 j M
/ ki 2 j )
i
(
overall
)1nkM(h)
n(hM
1)k(h
e)1nkM(h.e
)n(hM
1)k(h
γγ
M points
wFF,0(k)
 (0) (k- ∆ )
Trang 104{ (i) (i) 2}
w , w 2
i
DFE
MMSE min E b (k) a (k)
i FF i
=
M points IDFT
↑
↑
Trang 106x = (i) −
)z(F
1]1)z(F[1
1)
z(A
)z(X) i
−+
nz)
n()
z(F
)k()k(v.L2)k(A)L2mod(
)]
k()k(A[)k('
)z(F
)z(V.L2)z(A)z('X
]1)z(F).[
z('X)z(V.L2)z(A)z('X
) i (
) i (
=
Trang 107z(
)
k
( = (i) +
)L2mod()]
k(v.L2)k(A[)L2mod(
Trang 109{ } {2 2}
)k(y)k(AE)
−
-)k(x.w
i (
k(x.w
k 1
k = +µ
− +
−
µ
S)
NN(
20
+
<
µ
<
Trang 110)m(e.)
k
(
∆k
w
−
)m(x.w)m(A
Trang 111k(x)
k(K.)1k(P
k(Kw
w
)k(x.w)k(
k(x
)k()
k
(
K
)k(x)
1k
1
* 1
−
−λ
=
ξ+
Trang 113n n
* n N
Trang 114{ 2 }
1 n 1 n 1
1 n 1 n N
1
E − = θ∈ θ−θ − −− θ−θ − ≤σ −
σθ
n 2 1 n n n T n n 1 n 1
1 n 1 n n N
≤λ
=β
1
n n
n
n n
σ
2 n 2 1 n n 2
n =α σ +β ρ
λ
Trang 1152 2
1
n + δ ≤ρ
T 1 n n
n =y −θ − xδ
2 n n 2 n 2 1 n n
2
n
n
* n n n
1
n
n
n n n
1 n T n
* n 1 n n 1 n n
n
G.1
)
1(
)
1
(
.x.P
G.1
P.x.x.P.P
1
1
P
λ+λ
−
δλ
−λ
−ρλ+σ
−
λ
−λ
n n max
n n n
n n n
n n
n max
n
max n 0
n n
* n 1 n T n n
0)1G(1if
0)1G(1if])1G(1
G1
[G11
1Gif
2
)1(
0if
),min(
x.P.xG
δ
σ
−γ
+λ
>
−µ
+
−µ
+
−
−
=µ
=λ
Trang 116θθ
Trang 117S)v,A()
v,A,(z
Trang 118)(
N ρΘ
S )
T n 1 N 2
n 1 N 2 N
)v,A(x.a
:C
)v,A,(za:C)
−
∈θ
=
ρ
≤θ
−
∈θ
=
ρ
Θ
)(
N ρΘ)
N ρΘ
0l);
()
Trang 119−
D
1 D _ D D
1 D
D 1 D D
N
c00
0
c
c0
0c
c
cc
00
c
C
)ws.C(
zn =θT TN n + n
H)w,s(w
.s
N ρ
Θ
H ) w ,
s
(
2 2 T 0 N 1 N 2
−
−θ
∈θ
=
ρ
Θ
Trang 120ν+
=D i
n i n i
n c au
ρ
− ν
−
N N i
) 1 ( i K
)
1
(
e
a
2 N
H N )
1
(
e.C.I.K
)
1N2(C.C
− ν
=
θ
θ ∈ ΘN(ρ))
(
N ρ
Θ
2 2 2 ) 2 ( 0 2 2 a
2(cos
0 ) 2 ( N
)
2
(
e
=
ε
0 H N 1
0 2 2 a
2 N
H N )
2
(
e.C.I)2(cos
C.C
− ν
ρ+
=
θ
Trang 122i
Q i
i
N
)1/0(P
ri=∆ U /Q
Trang 123i,r)
p1.(
p.1k
1M.k
Lk
1k(
)!
1M(1
k
1M
Q
N
k M k
N p (1 p)
k
M)
k Q
/
1k
1M)1
k N
, Q / U
, Q / U
i
)p1.(
p.1k
1M)
k,1/0(P
)1/k(P)
k,1/0(P
r
Q i i
i Q Q
i i
k
Lk)k,1/0
Trang 1250U,1Q
Trang 126N (k) r pP
M 1 i
i j { 1 , 2 , , M } \ { i i , , i }
j i
i i
1 k M 1 i N
1 2 1 1
Q(k) p p p (1 p )P
M
1 L
k
Np
)k(P)Lk(r
Q
i i Q Q
/ R Q
Q / R
1 i
R rp
N
Trang 127LNLN
k =δ +σ −ρ
Trang 128~
ip
~
→∞
)t(Q)
1()1t
1()1t
i
i i
i
ζ
−+
r)t(p
~
i
) t ( i
i ≈
)t
(
p
Trang 135×
Trang 145γ
Trang 147γ
Trang 148γ
Trang 151[1] J.G Proakis, "Digital Communication", McGraw-Hill, 1995 - (book)
Trang 153ç