Kĩ năng: Rèn luyện kĩ năng tính toán, biến đổi biểu thức số và biểu thức chữ có chứa căn thức bậc hai; kĩ năng tìm tập xác định của biểu thức, giải phương trình, bất phương trình.. Tư [r]
Trang 1Ngày soạn: 12.10.2019
ÔN TẬP CHƯƠNG I (tiếp)
I Mục tiêu:
1 Kiến thức: Củng cố các kiến thức cơ bản về căn bậc hai.
2 Kĩ năng: Rèn luyện kĩ năng tính toán, biến đổi biểu thức số và biểu thức chữ có chứa
căn thức bậc hai; kĩ năng tìm tập xác định của biểu thức, giải phương trình, bất phương trình
3 Tư duy: Rèn luyện khả năng quan sát, dự đoán, suy luận hợp lý và suy luận lôgic; Các
phẩm chất tư duy, đặc biệt là tư duy linh hoạt, độc lập và sáng tạo
4 Thái độ: Có ý thức tự học, hứng thú và tự tin trong học tập, nghiêm túc, linh hoạt,
ônluyện thường xuyên;
* Giáo dục đạo đức: Có đức tính cần cù, vượt khó, cẩn thận, quy củ, chính xác, kỉ luật, sáng
tạo
5.Năng lực cần đạt:
- HS có được một số năng lực: năng lực tính toán, năng lực tư duy, năng lực giao tiếp, năng lực hợp tác
II Chuẩn bị:
- GV: Bảng phụ phần KTBC, MTCT
- HS: Ôn tập các câu hỏi phần ôn tập chương
III Phương pháp và kỹ thuật dạy học:
- Phương pháp: Vấn đáp-gợi mở,nêu vấn đề,luyện tập – thực hành, hoạt động nhóm
- Kỹ thuật dạy học: Kt chia nhóm, giao nhiệm vụ, đặt câu hỏi
IV Tổ chức các hoạt động dạy học:
1 Ổn định tổ chức (1’):
2 Kiểm tra bài cũ (5’):
* HS1: Ghi kết quả của các phép biến đổi đơn giản biểu thức chứa căn thức bậc hai:
1) A2 = 2)
A
B = (Với A.B 0 và B0) 3) A B2 = (Với
B 0) 4) A B = (với A 0; B 0)
5)
A
B (với B > 0) 6)
C
A B … (Với A, B 0; A B)
? Công thức (2) ở trên có gì khác với công thức khai phương một thương? (điều kiện khác nhau)
? Việc trục căn thức ở mẫu ngoài cách làm theo các công thức trên, nhiều khi ta có thể làm như thế nào? (Phân tích tử thành nhân tử rồi rút gọn với mẫu)
3 Bài mới:
*HĐ1: Bài tập rút gọn biểu thức
- Mục tiêu: HS thực hiện thành thạo các phép biến đổi đơn giản về căn bậc hai, rèn
luyện kĩ năng tính toán, biến đổi biểu thức chữ có chứa căn thức bậc hai, biết cách xác định điều kiện của một biểu thức
Trang 2-Thời gian: 10’
- Phương pháp và kỹ thuật dạy học:
+ Nêu vấn đề, luyện tập – thực hành Hoạt động nhóm
+ KT chia nhóm, giao nhiệm vụ, đặt câu hỏi
- Cách thức thực hiện
- Cho HS nghiên cứu đề bài
- Cho 2 HS lên bảng thực hiện 2 phần a và
b, dưới lớp chia làm hai nhóm, mỗi nhóm
làm 1 ý
- Câu a, GV có thể hướng dẫn HS rút gọn
tiếp:
•Nếu 0 a –1,5 thì
A = 3 a 3 2 a(1)
•Nếu a < –1,5 thì A = 3 a 3 2a(2)
Sau đó xét xem a = – 9 thỏa mãn điều kiện
nào để từ đó thay vào (1) hoặc (2) tính giá
trị của A
? Để làm bài này ta đã sử dụng kiến thức
nào của chương? (hằng đẳng thức căn)
- GV chốt lại: Gặp những căn thức bậc hai
mà biểu thức lấy căn đưa được về dạng
bình phương thì ta nên dùng hằng đẳng
thức để bỏ dấu căn Trường hợp có dấu
GTTĐ thì cần biện luận để bỏ dấu GTTĐ
*Bài 73/sgk T40 Rút gọn rồi tính giá trị
a) A = 9a 9 12 a 4a2 tại a = – 9 Điều kiện a 0
A = 3 a (3 2 ) a 2
A = 3 a 3 2 a (*)
Ta thấy a = –9 thỏa mãn điều kiện của biểu thức A nên tại a = – 9 thì A có giá trị là:
3 9 3 2( 9) = 9 – 15 = 9 – 15
= – 6
b) B =
2
3
2
m
m
Biểu thức B xác định với m 2
B =
2
3
2
m m m
3
2
m m m
• Nếu m> 2 thì m 2 m 2 nên B = 1 + 3m
• Nếu m < 2 thì m 2 – (m – 2) nên B =
3
1 [ ( 2)]
2
m
m m
Với m = 1,5< 2 thì B = 1 – 3.1,5 = – 3,5
*HĐ2: Bài tập chứng minh đẳng thức
- Mục tiêu: HS biết phương pháp chứng minh đẳng thức, rèn luyện kĩ năng tính toán, biến đổi biểu thức số có chứa căn thức bậc hai
- Thời gian: 7’
- Phương pháp và kỹ thuật dạy học:
+ Vấn đáp - gợi mở, luyện tập – thực hành
+ KT đặt câu hỏi
- Cách thức thực hiện:
- Cho HS nghiên cứu đề bài
? Nêu các phương pháp chứng minh
đẳng thức?
? Bài này nên sử dụng phương pháp
nào?
*Bài 75/sgk T4.Chứng minh các đẳng thức
a) Biến đổi vế trái ta có:
9
Trang 3? Biến đổi vế trái nên thực hiện như
thế nào? (trong ngoặc không nên thực
hiện bước quy đồng trước mà nên RG)
- GV chốt lại: khi biến đổi các biểu
thức có chứa căn thức cần quan sát và
nhận xét kĩ biểu thức để có cách làm
hợp lí, nên nhận xét và phân tích tử và
mẫu thành nhân tử để rút gọn
=
=
4 2 1,5
2 2
Sau khi biến đổi ta thấy VT bằng VP Vậy đẳng thức được chứng minh
*HĐ3: Bài tập rút gọn biểu thức chữ và sử dụng kết quả rút gọn
- Mục tiêu: Rèn luyện kĩ năng tính toán, biến đổi biểu thức chữ có chứa căn thức bậc hai; kĩ năng tìm điều kiện xác định của biểu thức, giải phương trình, bất phương trình
- Thời gian: 12’
- Phương pháp và kỹ thuật dạy học:
+ Vấn đáp - gợi mở, luyện tập – thực hành Hoạt động nhóm
+ KT chia nhóm, giao nhiệm vụ, đặt câu hỏi
- Cách thức thực hiện:
- Cho HS nghiên cứu đề bài
- Cho 1 HS lên bảng thực hiện việc rút
gọn, dưới lớp cùng làm và nhận xét
? Đã sử dụng kiến thức nào của
chương để giải bài tập?
(khai phương một tích;
a 0, a = (√a)2)
? Làm thế nào để tính giá trị của Q khi
a = 3b? (cần kiểm tra xem có thỏa mãn
điều kiện hay không rồi thay và biểu
thức đã rút gọn)
- GV nêu đề bài bài bổ sung
- Cho HS làm theo nhóm câu a và b
*Bài 76/sgk T40
a) RG biểu thức Q:
a
a
= 2 2
a
a b –
2 2
2 2
a b
2 2
a a b b
= 2 2
a
a b
2 2
b a b
a
a b –
2 2 2
2 2
a a b
b a b
a
a b – 2 2
b
a b
= 2 2
a b
a b
=
.
a b
a b a b
a b
a b
b) Xác định giá trị của Q khi a = 3b
Ta có 3 > 1 và b > 0 nên 3b > b do đó a = 3b thỏa mãn điều kiện
Thay a =3b vào biểu thức đã RG ta được:
Q =
3 3
b b
b b
=
b b b
b b b
*BTBS: Cho A =
3 1
x x
a) Tìm điều kiện xác định của A?
Trang 4- Cho nhóm làm nhanh nhất trình bày
trên bảng
- GV nhận xét, chốt lại cách làm và
cho các nhóm đổi bài chấm chéo
- GV nêu thêm đề bài (ý c và d)
? Nêu cách tìm GTNN của một biểu
thức?
? Biến đổi và lập luận chứng minh
A k (k là hằng số)
? Để 1 –
4 1
x nhận giá trị nguyên thì
có nhận xét gì về giá trị của
4 1
x ?
? Từ đó làm như thế nào tìm được x?
- GV hướng dẫn trình bày
b) Tìm x để A =
1 5 c) Tìm giá trị nhỏ nhất của A?
d) Tìm x Z để A Z ?
Giải: a) A =
3 1
x x
xác định khi x 0
b)Với x 0, ta có A =
1
5
3 1
x x
=
1 5
5√x−15
5(√x+1)=
√x+1
5 (√x+1)5√x−15= √x+1
√x=4 x = 16(t/m)
c)
3 1
x x
= 1–
4 1
x
Vì x 1 1, áp dụng quy tắc so sánh hai phân số cùng tử, có tử và mẫu cùng dương
ta được √x +14 ≤41 –
4 1
x – 4
1–
4 1
x – 3 Vậy Amin= – 3 khi x = 0 d) A Z 4( x 1) Từ đó có:
[√√x +1=−1 VN x+1=1 x=0
√x+1=2 x=1
√x+1=−2 VN
√x +1=4 x=9
√x +1=−4 VN
Vậy x {0; 1; 9} thì AZ
4 Củng cố (5’): Nêu các dạng bài tập ôn tập trong 2 tiết vừa qua?
? Phối hợp các phép biến đổi về căn thức cần chú ý gì?
(+ Xem xét kĩ đầu bài, thực hiện đúng thứ tự
+ Biểu thức dưới dấu căn đưa được về dạng bình phương thì bỏ dấu căn nhờ hằng đẳng thức căn
+ Biểu thức dạng phân thức thì nên xét xem có phân tích tử và mẫu thành nhân tử để rút gọn)
5 Hướng dẫn về nhà ( 5’):
- Ôn lại hệ thống lí thuyết và ôn lại các dạng bài tập trong phần ôn tập chương
- BTVN: 100, 106,107/SBT
- HDCBBS: Giờ sau kiểm tra 1 tiết, chuẩn bị MTCT
Trang 5V Rút kinh nghiệm:
………
………
………
……
Ngày soạn: 12.10.2019
KIỂM TRA CHƯƠNG I
I MỤC TIÊU
1 Kiến thức: Kiểm tra các kiến thức về định nghĩa căn bậc hai, điều kiện tồn tại căn bậc
hai, các tính chất, qui tắc và các phép biến đổi biểu thức chứa căn thức bậc hai
2 Kĩ năng: Kiểm tra kỹ năng tính toán, thực hiện các phép biến đổi đối với các biểu
thức có chứa căn bậc hai
3 Tư duy: Rèn luyện khả năng quan sát, dự đoán, suy luận hợp lý và suy luận lôgic; Khả
năng diễn đạt chính xác, rõ ràng ý tưởng của mình
4 Thái độ: HS có thái độ ham học, say sưa tìm tòi lời giải, trung thực, cẩn thận, có ý thức
trân trọng thành quả lao động của mình và yêu thích môn Toán
5 Năng lực cần đạt: HS có được một số năng lực: năng lực tính toán, năng lực tư duy
II HÌNH THỨC KIỂM TRA
Kết hợp trắc nghiệm khách quan và tự luận: Tỉ lệ 50% TNKQ và 50% TL
III MA TRẬN
Cấp
độ
Chủ đề
Cộng
Cấp độ thấp Cấp độ cao
L
1.Căn bậc
hai và
hằng
đẳng thức
2
A A
Nhận biết được căn bậc hai số học
- Điều kiện để
Axác định khi A 0 Liên hệ giữa phép chia , phép nhân và phép khai phương
Vận dụng được hằng đẳng thức 2
A A khi tính CBH, tìm giá trị của x
So sánh biểu thức chứa căn thức bậc hai
Số câu:
Số điểm:
Tỉ lệ %
2 1,0 10%
2 1,0 10%
2 1,0 10%
1 0,5 5%
7 3,5 30%
2 Các Biết Phép Hiểu được phép - Vận dụng các - Tìm
Trang 6phép tính
và các
phép biến
đổi đơn
giản về
căn thức
bậc hai
biến đổi:
Đưa thừa
số ra ngoài dấu căn, đưa thừa số vào trong dấu căn
biến đổi: Đưa thừa số ra ngoài dấu căn, đưa thừa số vào trong dấu căn, Khử mẫu của biểu thức lấy căn, trục căn thức ở mẫu
phép biến đổi đơn giản căn thức bậc hai để rút gọn biểu thức , tìm điều kiện của x để biểu thức lơn hơn 0 hoặc nhỏ hơn 0
GTLN của biểu thức chứa căn thức bậc hai
Số câu:
Số điểm:
Tỉ lệ %
2 1,0 10%
2 1,0 10
%
2 1,0 10%
2 2,0 20%
1 0,5 5%
9 5,5 55%
3 Căn
bậc ba
Khái niệm căn bậc ba
Tính chất căn bậc ba
Số câu:
Số điểm:
Tỉ lệ %:
1 0,5 5%
1 0,5 5%
2 1, 0 10%
T/số câu:
T/sốđiểm:
Tỉ lệ %
5 2,5 25%
4 2,5 25%
1,0 10
3 3,0 30%
1 1,0 10%
18
10 100%
IV ĐỀ KIỂM TRA
I Phần trắc nghiệm: (5,0 điểm)
Chọn phương án trả lời đúng nhất (mỗi phương án trả lời đúng 0,5 điểm)
Câu 1 Căn bậc hai số học của 16 là:
A 4 và - 4 B 4 C - 4 D 8 và – 8
Câu 2
A Với hai số a và b, nếu a < b thì a b
B Với hai số a và b, nếu a < b thì a b
C Với hai số a và b không âm, nếu a < b thì a b
D Với hai số a và b không âm, nếu a < b thì a b
Câu 3 Đưa thừa số vào trong căn của biểu thức 81a (với a 0) ta được:
Trang 7Câu 4 Đưa thừa số vào trong căn của biểu thức 2 3 ta được:
Câu 5 Khử mẫu của biểu thức
2
3xy
xy (với xy>0) ta được:
A 3xy 2 B -3xy 2 C 3 2xy D.-3 2xy
Câu 6 Giá trị của biểu thức
5 5
1 5
là:
A 5 B 5 C 5 D 4 5
Câu 7 Điều kiện xác định của biểu thức 2 5x là:
A
2
5
x
B
2 5
x
C
2 5
x
D
2 5
x
Câu 8 Kết quả của phép tính 3,6.40.25 là:
A 30 B.36 C 60 D.12
Câu 9 Căn bậc ba của -8 là:
A 2 B -2 C 4 D.-4
Câu 10 Kết quả của phép tính
3 3
135
5 là:
II Phần tự luận: (5,0 điểm)
Câu 1.(1,0 điểm) Rút gọn các biểu thức sau:
a) 2 2 3 18 4 32 50
b)
với b 0
Câu 2.(1,0 điểm) Tìm x biết:
a)
4
3
x x x
b) √ ( 2x+3 )2=4
Câu 3.(2,0 điểm) Cho biểu thức
2
1
P
a) Tìm điều kiện xác định và rút gọn P
b) Với giá trị nào của x thì P> 0
Câu 4 (1,0 điểm)
a) So sánh: 2 3 và 3
Trang 8b) Tìm GTLN của
1
A
V ĐÁP ÁN, BIỂU ĐIỂM
I Phần trắc nghiệm: (5,0điểm) mỗi phương án trả lời đúng 0,5 điểm
II Phần tự luận: (5,0điểm)
Câu 1.
(1,0
điểm)
a, a) 2 2 3 18 4 32 50
= 2 2 3 9.2 4 16.2 25.2
= 2 2 9 2 16 2 5 2 ; = 4 2
0,25
0,25
b, với b 0ta có:
6
b
0,25
Câu 2
(1,0
điểm)
a,
b)
4
3
x x x
Đk: x - 5
2 x 5 - 3 x 5 + 4 x 5 = 6
3 5 x =6
x 5 = 2
x+ 5 = 4 x= - 1( TMĐK) Vậy x = - 1
0,25
0,25
b,
a) √ ( 2x+3 )2=4⇔|2x+3|=4
⇔2 x+3=4 hoặc 2x+3=−4
+)
1
2 3 4
2
x x
+)
7
2 3 4
2
x x
Vậy
1 2
x
hoặc
7 2
x
0,25
0,25
Trang 9Câu 3
(2,0
điểm)
a,
ĐKXĐ: x0,x1
2
: 1
: 1
x
P
1 2
1
x x
0,25
0,5
0,5
0,25
b,
Để P > 0 thì 1 0 1 0
x
x
và x hay0 x và 1 x 0 Kết hợp với điều kiện ta được 0 < x < 1 thì P > 0
0,25
0,25
Câu 4
(1,0
điểm)
a, Vì 2 3>0 và 3>0
nên để so sánh 2 3 và 3 ta đi so sánh ( 2 3)2 và 32
Ta có ( 2 3)2=5+2 2 3; 32=9=5+2.2 nên ta so sánh 2 3và 2
Vì ( 2 3)2 ( 2) ( 3)2 2 2.3 6 4 Nên 2 3 2 2 2 3 4
5 2 2 3 9
Vậy 2 3>3
0,25
0,25
b,
Tìm GTLN của A =
1
5x 3 x 8 với mọi x0
Ta có A=
2
20 151
(Vì
2
5
x
GTLN của A =
20
151 khi x=
9 100
0,25
0,25
Trang 10Tổng 10
VI KẾT QUẢ KIỂM TRA: Thống kê số lượng điểm kiểm tra, tỷ lệ % của học sinh
các lớp theo từng mức điểm
Điểm
Lớp
< 5 5 - <6,5 6,5 - <8 8 - <9 9 - 10
9B
VII RÚT KINH NGHIỆM
………
………
………