1. Trang chủ
  2. » Ngoại Ngữ

SỰ HỘI TỤ CỦA MỘT CHUỖI CON CỦA CHUỖI ĐIỀU HÒA

6 29 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 273,57 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Ngoài ra, để xem xét sự tồn tại của hàm Riemann Zeta tại một điểm cho trước, bằng cách so sánh giá trị chuỗi tại điểm đó với một chuỗi con như thế, từ đó ta có thể biết hàm số có xác đị[r]

Trang 1

THE CONVERGENCE OF A SUB-SERIES OF HARMONIC SERIES

Dinh Van Tiep * , Pham Thi Thu Hang

College of Technology-TNU

ABSTRACT

When studying the convergence of a numeric series, one important technique we often use is to compare that series with a series whose each term is a power of the reciprocal of an integer We sometimes call this technique p-test In general, we often estimate that series with one of sub-series (these are series whose each term is an integer) of the harmonic series Besides, to test the convergence of Riemann Zeta function at a given point, by comparing this series with a such sub-series, since then we may know whether the function is defined at this point or not Therefore, finding the conditions in which such sub-series converges becomes a meaningful work This article aims to present new result for this problem

Keyword: sub-series of the harmonic series, Riemann Zeta function, convergent, numeric series,

the reciprocal of an integer.

INTRODUCTION*

We know that the harmonic series

1

1

n n

 is divergent However, there are its convergent

sub-series, such as 2 3

kk kk

general and useful result which we often

consider to use first to test the convergence of

a given series, namely, the series

1

1

p

kk

converges if and only if p  1 and diverges if

1

p  This method is called the p-test Now,

consider a sub-series

1

1

kn k

 of the harmonic series If this series converges, whether the

sequence   nk k1 increases at a higher speed

than some sequence   1, ( 1)

k

k 

   does

This question is answered in Proposition 1

below Besides, if we look at the distance of

two consecutive denominators,

1

:

k nknk

   , we also want to know how

different it is between this distance with that

distance of the series

1

1

kk

 , the main result

is stated in Theorem 1

THE RATE OF THE INCREASING OF TERMS FOR A DIVERGENT SUB -SERIES

We first consider   nk k1 to be an increasing sequence of positive integers It naturally establishes the series

1

1

kn k

 , we index this by

(1) To find out the rate at which each term

increases, we compare this series with convergent series in the form

1

1

kk

(   1), and we get the following statement

Proposition 1 If the series

1

1

knk

 diverges,

then lim inf k 0

k

n

k

  for all 1

This statement is easy to verify Indeed, we suppose by contradiction that there exist

0

k

n

k 

   This means, there has an index k0 1 such that 1 1

,

k

n   k for all

0

kk This leads to the conclusion that (1)

must be convergent, we meet the

Trang 2

However, this statement only includes one

direction, i.e if lim inf k 0

k

n

k

  (    1), we

do not know whether (1) diverges or not For

example, consider the series (1) with

k

n k k     We have

1

(ln )

However, by using the integral test, we can

see that the series

1

1 (ln )

kk k

 converges,

and so does (1)

In the above counter-example, we use the

floor function   and apply the following

fact, which said that for an increasing

sequence   ak k1 of real number, either both

series

1

1

ka k

1

1

k   ak

diverge This fact can be implied easily by

applying the comparison test from the

observation that 1 k 2, ( 1).

k

a

k a

  For another counter-example, let us consider

the series 1

1 1

1

n

 It is clear that

1

1

1 1

1

n

n

n

n

n

 

      for all  1

However, this series diverges because

1

1

ln

n

n  n n for all n5 and the series

2

1

ln

nn n

 diverges, which can be seen by

applying the integral test

   be an increasing function

defined on the set of all natural numbers

Then, the series (n)

2

1

nn

 converges if

[ (n) 1] ln

ln ln

n

n n



  

  , and it diverges if

[ (n) 1] ln

ln ln

n

n n



  

 

[ (n) 1] ln

ln ln

n

n n



    

ln ln (n) 1

ln

n n

    

 for all n large enough

So, n(n)  n lnn By the integral test, we can see that the series

2

1 ln

nnn

 converges

Therefore, (n)

2

1

nn

 converges, too

Finally, if [ (n) 1] ln

ln ln

n

n n



   

comparing the series (n)

2

1

nn

 with the series

2

1 ln

nnn

 , which diverges, we can see that our series diverges, too

We now illustrate the use of this test to some following examples

1

2 ln ln

1 ln

converges

• Indeed, set

1 1 (n) ln ln

ln

n

n  nn, then

1 ln ln ( ) 1

ln ln ln

n n

Hence, [ ( ) 1] ln

lim

ln ln

n

n



  

2

ln

(ln ln )

n

n n



    By the above test,

we imply that our series converges

Trang 3

Example 2 The series 1

1

2 ln

1 ln

nn

diverges

• Indeed, by taking

1 1 (n) ln

ln

n

n  nn, we

( ) 1

n n

    , and

[ ( ) 1] ln

lim

ln ln

n

n



ln ln

n n

efore, the series diverges

Example 3 The series

2

1 (ln )

nn

 diverges

• Indeed, by setting ( )

(ln )

n

n  n , we get

ln ln

( )

ln

n n

n

[ ( ) 1] ln

lim

ln ln

n

n



  

n



series diverges □

ln

2

1

(ln ) n

nn

 , where   0.

Case 1: 0    1, if n( )n  (ln ) n lnn, then

1

ln ln

( )

ln

n

n

n

   , so [ ( ) 1] ln

lim

ln ln

n

n



  

  Hence, the series diverges

Case 2: 1   , if n( )n  (ln ) n lnn, we have

1

( )n (ln n)(ln ln )n

[ ( ) 1] ln

lim

ln ln

n

n



    

Therefore, the series converges

The limit series for sequence of increasing

series

Let    k 1, k 1

ab  be two sequences of positive numbers We denote

  ak k1   bk k1 to mean that the sequence

  ak k1 is an infinitesimal of a higher order than   bk k1. That is, lim k 0

k k

a b

  Denote

1

ln x: ln , x ln2x: ln ln ,  x ,

1

lnm x: ln(ln mx) Using these notations,

we have an order sequence of sequences as

follows:

 ln1   (ln1 )(ln2 ) 

nn n nn

(ln )(ln ) (lnm ) (*)

n

n n nn

(ln )(ln ) (lnm )

n

 1 2 

(ln )(ln )

n

n nn

 1 

(ln )

n

nn  n

for all    1   , , and m1

We see that for any sequence on the left of (*), the series whose each term is the reciprocal of its corresponding term is divergent However, for any sequence on the right of (*), the series whose each term is the reciprocal of its corresponding term is convergent All of these sequences satisfy the necessary condition in Proposition 1, that is lim n 0.

n

u

n

  It is natural to ask that whether exists the limit sequence { } kn n for the sequence of sequences on the left of (*) (this means that such sequence satisfies

(ln )(ln ) (ln )

m n

for all m1, and for every sequence

{ } ,{ }a n n b n n such that

Trang 4

{ }a n n { }k n n { }b n n, the series 1

1

n n

a

diverges, but 1

1

n n

b

 converges), and does

the series

1

1

nk n

 still diverge?

Consider another sequence lying somewhere

at the position of (*) in the following

example Then, since this, we will

immediately figure out that there does not

exist such limit sequence as expected

Example 5 [2] Let  ( ) n be the smallest

positive integer such that 1ln( )n ne for

1 (ln )(ln ) (ln )

nn n nn n

( )

(ln )(ln ) (ln )

n

n

( ) 3

ln

n n n

n n

Therefore,

( ) 3

ln ln

[ ( ) 1] ln

n

n n

We now prove that this limit is 1 In fact,

because 1ln( )n ne, we have

( ) 1

e    ne and so on,

2

e   ne  where we denote

k k

ee ee e  e We can prove

by induction that

k k

ee for all integers k

Hence,

( ) 3

ln

ln

n n n

2

ln ( ( ) 2)

ln

n n

n

2 ( ) 2

2 2

ln(ln )

( ( ) 2)

ln

n

n n

n e

2

( ( ) 2)

n

n

e



2

2

ln(ln )

ln

n

n

n

  Therefore, since the

previous arguments, we conclude that

2

[ ( ) 1] ln

ln

n

n



  

 This shows that the series diverges

We also can verify that

 (ln1 )(ln2 ) (ln ( )n )  2

n

 ln  2   1

nn n

  for all   ,   1.

( ) 1

1

0

n

setting x n: ln 2n, we have

( ) 1 ( ) 1

2

( 1) 1

1

ln

n n

n x

x n

completes the proof of the observation

The series of the reciprocals of primes

We have a famous result in [1], which said that the sum of reciprocals of all prime numbers

2

1

k

p prime pk

  diverges Hence, by

Proposition 1, we have lim inf k 0

k

p

k

  for all

1

  This is a simple corollary

Another corollary is directly implied from the fact that the sum of reciprocals of all primes diverges, which says that the series

1

1 ,

kqk

where q kk(  1, 2, ) are all composite numbers, is divergent Indeed, to see this point, we only take the sum of the type

2

1 , 2

k

p prime pk

  this sum is obviously less than the sum we want to study It diverges, so the first series diverges, too

The conditions on distance between consecutive terms

To study how different each pair of consecutive elements of the above sequence are, we consider the sequence whose elements are in form  k: n k1n k k, 1, 2, We have very nice results as follows

Trang 5

Theorem 1 (Tiep) If there exists a real

(k 1)

k

k  k

converges

In this theorem, because

1

(k 1)

k

k

k

 

 



, so the theorem is

equivalent to the following theorem: If there

exists a positive number such that

lim inf k 0

k k

, then (1) converges To prove

this theorem, we need the following lemma

Lemma Let

1

k k q

S q

  with  0, then there exists a constant  0 such that

1

k

S k for all k large enough

1

1

( 1)

S S

k k

 

  

, so by Stolz-Cesàro theorem, we have

1

1

lim

1

k

k

S

k 

 

 Therefore, we only need to

take  to be a positive number less than this

limit, for example, 1

 , then the

lemma is proved □

The proof of Theorem 1: We are going to

prove the equivalent form of Theorem 1, i.e

with the hypothesis that lim inf k 0

k k

 for

some   0.

Firstly, from this hypothesis, there exist

0

  and an integer k0 1 such that

k

k k

   Hence, 1 1

1

,

n nS k

  for all kk0.

However, the series

0

1 1

k k  k

 converges and therefore so does the series

1 1

1

k k n kS k k

(1) converges

From Theorem 1, we have the following simple remark: if k is bounded, or even the

ratio (ln )

k

k

is bounded for some positive number  , then (1) diverges

We now generalize Theorem 1 by using a

general series to compare with (1)

Theorem 2 (Tiep) Suppose that the sequence

of positive numbers { } ak k1 is decreasing, and the series

1

k k

a

 converges Set

1

:

k

  , then the series (1) converges

if lim inf k 0

k

k



k

k



, so there exists an integer k0 1 such that

k k

  for all kk0. Therefore,

n naanaa

          

1

naa

1

k

a

n naaa n a 

But, since 0lima , we can find an

Trang 6

index k1  1 such that

1

2

a na 

for all kk1 Hence, 1

1

2

k

a

n   for all

0 1

max{ , }

kk k This shows that the series

(1) converges by the comparison test

By the same technique, we also can prove the

following result, which is quite interesting

Theorem 3 Let

1

k k

a

 diverge, whose terms establish a decreasing sequence of positive

numbers Set

1

:

k

  , then the series

(1) also diverges if lim inf k 0

k

k



REFERRENCE

1 Roman J Dwilewicz, Jan Minac, Values of the Riemann zeta function at integers, Materials Mathematics ISSN: 1887-1097

2 W J Kaczor, M T Nowak, Problems in Mathematical Analysis I, ISBN: 978-0-8218-2050-6

3 T Thanh Nguyen, Fundamental Theory of

Functions of a complex variable, Vietnam

National University Hanoi Publisher, 2006

4 Elias M Stein, Rami Shakarchi, Complex

Analysis, Princeton University Press,

New Jersey, 2003.

5 Nick Lork (2015), Quick proofs that certain sums of fractions are not integers, The

Mathematical Gazette Vol 99

6 William Dunham (1999) Euler The Master of

Us All, Vol 22, MAA ISBN 0-88385-328-0.

TÓM TẮT

SỰ HỘI TỤ CỦA MỘT CHUỖI CON CỦA CHUỖI ĐIỀU HÒA

Đinh Văn Tiệp * , Phạm Thị Thu Hằng

Trường Đại học Kỹ thuật Công Nghiệp – ĐH Thái Nguyên

Khi xem xét sự hội tụ của một chuỗi số, một phương pháp quan trọng hay được cân nhắc trước tiên là so sánh chuỗi đó với một chuỗi số với các số hạng là lũy thừa của nghịch đảo các số nguyên Một cách tổng quát, ta thường so sánh chuỗi số với một chuỗi con của chuỗi điều hòa Ngoài ra, để xem xét sự tồn tại của hàm Riemann Zeta tại một điểm cho trước, bằng cách so sánh giá trị chuỗi tại điểm đó với một chuỗi con như thế, từ đó ta có thể biết hàm số có xác định tại điểm đó hay không Do vậy, việc tìm điều kiện để biết chuỗi con của chuỗi điều hòa hội tụ hay phân kỳ trở thành một điều rất có ý nghĩa Bài báo sẽ đưa ra một số kết quả mới cho vấn đề này

Từ khóa: Chuỗi con của chuỗi điều hòa, hàm Riemann Zeta, hội tụ, chuỗi số, nghịch đảo của một

số nguyên

*

Ngày đăng: 29/01/2021, 05:18

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w