1. Trang chủ
  2. » Luận Văn - Báo Cáo

Influence of Laser radiation on the absorption of a weak electronmagnetic wave by confined electrons in compositional superlatices (case of electron - acoustic phonons interaction)

6 15 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 264,09 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Phương trình động lượng tử cho điện tử giam cầm trong siêu mạng hợp phần và hệ số hấp thụ sóng điện từ yếu bởi điện tử giam cầm trong siêu mạng hợp phần khi có mặt trương laser[r]

Trang 1

Influence of Laser radiation on the absorption

of a weak electronmagnetic wave by confined electrons in compositional superlatices (case of

electron - acoustic phonons interaction)

Ngo Thi Ha

Hanoi University of Science, VNU; Faculty of Physics

Major:The theoretical physics and mathematical physics

Code: 60 44 01 Supervisors: PhD Dinh Quoc Vuong Date of Presenting Thesis: 2011

Abstract Giới thiệu tổng quan về siêu mạng hợp phần, và đưa ra biểu thức giải tích về

hệ số hấp thụ phi tuyến sóng điện từ yếu bởi điện tử giam cầm trong bán dẫn khối khi chịu ảnh hưởng của trường bức xạ laser bằng phương pháp phương trình động lượng tử Phương trình động lượng tử cho điện tử giam cầm trong siêu mạng hợp phần và hệ số hấp thụ sóng điện từ yếu bởi điện tử giam cầm trong siêu mạng hợp phần khi có mặt trương laser (trường hợp tán xạ điện tử-phonon âm) Tính số và bàn luận

Keywords Vật lý lý thuyết; Vật lý toán; Trường bức xạ laser; Sóng điện từ

Content

Survey interacting electron-phonon system in the compositional superlattices are present in the case of two electromagnetic waves is described

( ) sin sin

as the electric field intensity vectorE01

and 1 corresponds with the wall amplitude and frequency of electromagnetic waves has from the weak, and the corresponding amplitude and frequency of the laser radiation, t is time The corresponding vector of the form 01   02  

( ) E c os E c os



Hamiltonian of the electron-phonon system in the compositional superlattices is written as:

0

,

( )

e

 

 

Trang 2

' ', ,

, ,

n p

n p q

z

q n n p

  

,

n k

a

 ,

,

n k

a

 is the operator of birth, destruction of electronic state n p,

; b q, b q is the

operator of birth, destruction of phonon state q

with wave vector q

, qqqz; p

is the electron momentum vector in the plane perpendicular to the z-axis of compositional superlattices;

q

 is the phonon frequency; ' ,

.

I q   zz e dz is in super form factor compositional superlattices; n p,

 is the energy of electrons in compositional superlattices; C q is constant interaction depends on the mechanism of electron scattering - phonon; c is the speed of light;  plank constant; e is the electron charge Using the transformation operator has obtained the quantum equation for the electron-phonon system:

' '

,

, , , ,

( )

n k

q n n

l s m f

n q

n t

D I q J a q J a q J a q J a q t





t



 

i

 

i

', ( )2 q n k, ( )2 q 1

n k q

 

i

n k q

n t N nt N

 

i

Here, the symbol x t is understood as the statistical average operator x; n n p,( )t is the

a  eE ma  eE mJ( )z is the Bessel functions of real numbers;

N b b

   is the particle number operator of electrons;

Trang 3

, ( ) , ,

n  taa  is the particle number operator of electrons;  is parameters included the assumption of adiabatic interaction

From the quantum equation (4), Bessel functions and developed using Fourier transfer spectrum obtained analytic expressions for the absorption coefficient  near

q

s    m        where the different scattering cases

The scattering electron - acoustic phonons:

2

z q

s O

q q C

v V

 

which VO is the normalized volume (selected V O 1);  is the electric constant strain,

 is crystal density; v s is sound velocity

'

3 2

2

2

, 0 02

B

n n

32 H H  16 HH  H H  64 HG  G G

 (6)

in which:

 

7

4

4 3

a os2 exp

2

s m

s m

m

B a

exp exp

s m

         

 

5

4

4

2

s m

s m

m

B a

  

s m

 

 

3

4

4 exp

2

s m

s m

m

s m

 

Trang 4

   '

0

B

1

m n

L

 

            

the first mini n, d is the super-cycle superlattices; n the energy levels in the isolated pits; m the effective mass of electrons; L z the width of the isolated holes; k B is the

Boltzmann constant; T is the absolute temperature;  

3/ 2 3 0

n e n

V m k T

  , n0 is the carrier

concentration; K( )z the second modified Bessel functions;  is the angle between two vectors of electromagnetic waves; n n, ' is the Kronecker symbol

Survey of the compositional superlattices GaAs - Al0.3Ga0.7As Observed in the temperature region from 320K to 365K strongest dependence, the absorption coefficient decreased rapidly with the energy of electromagnetic waves with the same key and value temperature absorption coefficient value as positive, negative, even is zero This means that the absorption coefficient in the coefficient was converted to increase and it shows the difference compared with conventional semiconductors

From the Hamiltonian equations of electron-phonon system, has developed the quantum equations and get the expression for the coefficient absorption of weak electromagnetic waves by confined electron in the compositional superlattices in the presence of laser radiation field In the case of near threshold to get analytical expressions for the absorption coefficient for the mechanism of electron- acoustic phonons interaction The results showed that the absorption coefficient depends on the complexity of the system temperature, amplitude and frequency of the weak and electromagnetic wave laser radiation Also depends strongly on the parameters characteristic of the superlattice The numerical results for GaAs compositional superlattice GaAs - Al0.3Ga0.7As evidence for the results obtained by theory The new result is that in determining the conditions (temperature, wave energy .) with each other scattering mechanisms underlying the absorption coefficient can be negative means that the absorption coefficient into the coefficient to increase In limited cases while ignoring the nonlinear terms return results corresponding to the case of linear absorption

Trang 5

References

Tiếng việt:

1 Nguyễn Quang Báu (chủ biên), Đỗ Quốc Hùng, Lê Tuấn(2011), Lý thuyết bán dẫn

hiện đại, NXB ĐHQGHN

2 Nguyễn Quang Báu (chủ biên), Nguyễn Vũ Nhân, Phạm Văn Bền (2010), Vật lý bán

dẫn thấp chiều, NXB ĐHQGHN

3 Lê Đình (2008), Một số hiệu ứng cao tần do tương tác electron – phonon trong dây

lượng tử bán dẫn, luận án tiến sĩ vật lý, ĐHKHTN, ĐHQG Hà Nội

4 Nguyễn Văn Hùng(1999), Lý thuyết chất rắn, NXB ĐHQGHN

Tiếng anh:

5 A.P.Solin (1985), Sov Phys Usp., 28, 972-993.

6 Nguyen Quang Bau, Nguyen The Toan, Chhoumn Navy, Tran Cong Phong (1996),

Comm Phys., Vol 6, No1 pp 30-40

7 Nguyen Quang Bau, Nguyen Vu Nhan, Tran Cong Phong (2003), Jounal of the

Korean Physical Society, Vol.42, No.5 -647

8 Nguyen Quang Bau, Tran Cong Phong (1998), J Phys Soc Jpn., 67, 3875

9 Nguyen Quang Bau, Tran Cong Phong, Jounal of the Korean Physical Society, Vol

41 pp149-154

10 Nguyen Quang Bau, Hoang Dinh Trien (2011), Intech: Wave propagation, chapter

22, pp 461-482

11 Nguyen Quang Bau, Le Thai Hung, Nguyen Dinh Nam (2010), J of Electronmagn

Wave and Appl., Vol 24, pp 1751-1761

12 Nguyen Quang Bau, Do Manh Hung, Le Thai Hung (2010), Pier Letters, Vol 15,

pp 175-185

13 Nguyen Quang Bau, Do Manh Hung (2009), Jounal of the Korean Physical Society,

Vol 42, No 2, pp 765-773

14 Nguyen Quang Bau, Le Thai Hung, Hoang Dinh Trien (2011), Intech: Behaviour of

electromagnetic wave in different Media and Structures, Ali Akdagli (Ed), pp 275-300

Trang 6

15 G M Shmelev (1977), Phys Stat Sol B (82), pp 391-1937

16 J.S Harris Jr (1990), Int J Mod Phys B4, 1149

17 L Esaki, R.Tsu (1970), IBM J.Res Develop., 14, 246-248

18 N Nishguchi (1995), Phys.Rev.B, 52, 5379

19 P.Zhao (1994), Phays Rev B,49,13589

20 P Vasilopoulos, M Charbonneau and C M Van Vliet (1987), Phys Rev B, 35,

1334

21 R Tsu and L.Esaki (1973), Appl Phys.Lett.22, 562

22 R Dingle (1975), Confined Carries Quantum states in ultra-thin Semiconductor

Heterostructures, in Festko-rperprobleme XV, H.J.Queisser, Pergamon Vieweg, New

York

23 R.A.Smith (1961), Wave Mechanics Crystal Solids, London

24 V L Malevich, E M Epstein (1975), Izvestria BYZ, Radiophysic, T 18, C

785-811

Ngày đăng: 28/01/2021, 20:46

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w