1. Trang chủ
  2. » Luận Văn - Báo Cáo

Đề thi thử THPT QG môn Toán THPT Chuyên Thái Bình - Tỉnh Thái Bình - Lần 4 - Năm 2019 - Có lời giải chi tiết | Toán học, Đề thi đại học - Ôn Luyện

8 15 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 1,71 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Sau đúng 1 tháng kể từ ngày vay thì người đó bắt đầu trả nợ và đều đặn cứ mỗi tháng người đó sẽ trả ngân hàng 20 triệu đồng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 20 triệu đ[r]

Trang 2

Equation Chapter 26 Section 1SỞ

GIÁO DỤC VÀ ĐÀO TẠO

TRƯỜNG THPT CHUYÊN

THÁI BÌNH

ĐỀ THI THỬ LẦN 4 TRẮC NGHIỆM MÔN TOÁN 12

(Thời gian làm bài 90 phút, không kể thời gian phát đề)

Mã đề: 132

Mục tiêu:

+) Đề thi thử THPT Quốc gia 2019 môn Toán trường THPT chuyên Thái Bình lần 4 có mã đề 132, đề thi gồm 50 câu hỏi với đủ các mức độ NB, TH, VD và VDC bám sát với đề thi minh họa của Bộ GD năm

2018 - 2019

+) Nội dung chính của đề vẫn được xoay quanh chương trình Toán 12, ngoài ra có một số ít các bài toán thuộc nội dung Toán lớp 11 (chỉ chiếm khoảng 10%)

+) Đề thi giúp các em làm quen và ôn thi kiến thức một cách tổng hợp và tiến dần đến kì thi THPT QG sắp tới một cách tự tin hơn

Câu 1 [NB]: Tìm số nghiệm nguyên dương của bất phương trình 23x322019 7 x

Câu 2 [TH]: Giá trị lớn nhất của hàm số y x 32x2  trên đoạn x 1 1;1

là:

A

31

10

9

Câu 3 [NB]: Cho hàm số yf x  có đồ thị như hình bên Tọa độ điểm cực đại của

đồ thị hàm số yf x 

là:

A 2;0 B 0; 4 

C 0; 2 

D  1;0

Câu 4 [TH]: Phương trình tiếp tuyến của đồ thị hàm số

1 2

x y x

 tại điểm có hoành độ bằng -3 là:

A y3x  13 B y  3x 5 C y3x5 D y  3x 13

Câu 5 [NB]: Cho loga b2 và loga c3; 0  a 1;b0,c0

Tính giá trị của

2 3 loga a b

P

c

A P = 6 B P = 5 C P =1 D P =

2

3

Câu 6 [TH]: Gọi z1 là nghiệm phức có phần ảo dương của phương trình z22z  Tìm số phức liên5 0 hợp của

1 2

z w

i

A w 1 3i B w iC w  3 i D w i

Trang 3

Câu 7 [NB]: Cho hàm số y = f (x) có bảng biến thiên như sau:

'

y

1



Đồ thị hàm số y = f (x) có tổng số bao nhiêu tiệm cận (gồm các tiệm cận đứng và tiệm cận ngang) ?

Câu 8 [TH]: Trong không gian với hệ tọa độ Oxyz, mặt cầu (S) có tâm I (1; -2; -1) và có tiếp diện là mặt

phẳng (P): 2x + y + 2z + 5 = 0 , có phương trình là:

A   2  2 2

B.  2  2 2

C   2  2 2

Câu 9 [TH]: Có bao nhiêu số nguyên m thuộc đoạn [-2; 7] để phương trình 3 2x2 2x m  có hai nghiệm7 phân biệt

Câu 10 [NB]: Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số

được liệt kê ở bốn phương án A, B, C, D dưới đây Hỏi hàm số đó là hàm số nào?

A

1

x y

x

1

x y x

C

1

x y

x

1 2 1

x y

x

Câu 11 [TH]: Cho số phức z a bi a b  , ,    thỏa mãn: z2   iz 1 i z2 3

Tính S = a + b

A S = 1 B S = -5 C S = -1 D S = 7

Câu 12 [NB]: Cho hàm số y = (x) có bảng biến thiên như hình vẽ Hàm số y = (x) đồng biến trên khoảng nào dưới đây?

'

y



4

3

4



A  1;3

B 1;1

C  4; 3

D  ; 1

Câu 13 [NB]: Tìm tập xác định D của hàm số   3

1

A D   B. D  ;1

C D  \ 1  D D1;

Câu 14 [NB]: Số phức z = 2 3i có điểm biểu diễn là:

Trang 4

A N =(3; 2) B P (3; 2). C M (2; 3). D Q (2;3)

Câu 15 [VD]: Gia đình ông A cần khoan một cái giếng nước Biết rằng giá tiền của mét khoan đầu tiên là

200.000 đồng và kể từ mét khoan thứ hai, giá tiền của mỗi mét sau tăng 7% so với giá tiền của mét khoan ngay trước nó Hỏi nếu gia đình ông A khoan cái giếng sâu 30m thì hết bao nhiêu tiền (làm tròn đến hàng nghìn)?

A 18 892 000 đồng B 18 895 000 đồng C 18 893 000 đồng D 18 892 200 đồng Câu 16 [VD]: Một người vay ngân hàng 500 triệu đồng với lãi suất 1,2%/tháng để mua ô tô Sau đúng 1

tháng kể từ ngày vay thì người đó bắt đầu trả nợ và đều đặn cứ mỗi tháng người đó sẽ trả ngân hàng 20 triệu đồng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 20 triệu đồng) Hỏi sau bao nhiêu tháng thì người đó trả được hết nợ ngân hàng? Biết lãi suất không thay đổi

A 30 tháng B 26 tháng C 29 tháng D 32 tháng.

Câu 17 [NB]: Đạo hàm của hàm số  2 

8

là:

1 '

3 4 ln8

y

'

3 4 ln8

x y

'

3 4 ln 2

x y

'

x y

Câu 18 [TH]: Trong khai triển  20 2 20

1 2 xaa x a x   a x Giá trị của a

0 - a1 + a2 bằng:

Câu 19 [TH]: Tìm số phức z thỏa mãn z2z 2 4i

A

2 4 3

z   i

B

2 4 3

C

2 4 3

z   i

D

2 4 3

Câu 20 [NB]: Cho hàm số y x 1,m 1

x m

, có đồ thị (C) Tìm m để đồ thị (C) nhận I (2;) làm tâm đối xứng

A

1 2

B

1 2

m 

C m = 2 D m = -2 Câu 21 [VD]: Trong không gian với hệ tọa độ Oxyz, có bao nhiêu mặt phẳng qua M (2;1;3) A(0; 0; 4)

cắt hai trục Ox, Oy lần lượt tại B, C khác O thỏa mãn diện tích tam giác OBC bằng 1?

Câu 22 [TH]: Tính thể tích của khối nón biết thiết diện qua trục của nó là tam giác vuông cân có cạnh

huyền bằng 2a

A  a3 B

3 2 3

a

C

3 3

a

D 2a3

Câu 23 [TH]: Cho hình chóp S.ABC có đáy ABC là tam giác cân tại A, cạnh bên SA vuông góc với đáy,

M là trung điểm của BC, J là trung điểm của BM Mệnh đề nào sau đây đúng?

A BC  (SAC) B BC (SAJ). C BC (SAM). D BC  (SAB).

Câu 24 [NB]: Cho khối chóp S ABCD có đáy ABCD là hình vuông, đường thẳng SC vuông góc với mặt

phẳng đáy Gọi V là thể tích của khối chóp Mệnh đề nào dưới đây đúng?

A

1 3

B

2 1

3

C

1 3

D

2 1

3

Trang 5

Câu 25 [NB]: Cho khối trụ có bán kính đáy r = 3 và chiều cao h = 4 Tính thể tích V của khối trụ đã

cho

A V 12 B

3

C V 16 3 D V 4

Câu 26 [VD]: Trong không gian với hệ tọa độ Oxyz, tìm m để mặt phẳng (P): x + y + z + 1 = 0 cắt mặt

cầu (S): x2 + y2 + z2 - 6 y + 2 (m - 2)z + 4 = 0 theo giao tuyến là một đường tròn có diện tích bằng 3.

A

2 1

m

m

 

 

3 1

m m

 

3 1

m m

 

  

Câu 27 [TH]: Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P): x + 2 y - z - 1 = 0

 Q : 3xm2 y2m1z 3 0

Tìm m để hai mặt phẳng (P), (Q) vuông góc với nhau.

Câu 28 [TH]: Trong không gian với hệ tọa độ Oxyz, cho tam giác ABCAB  3;0;4 , AC5; 2;4 .

Độ dài trung tuyến AM là:

Câu 29 [TH]: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :

 2;1;3

A

Phương trình mặt phẳng (Q) qua A và d là:

A x y z     4 0 B 2x y z   2 0 C x y z   6 0 D x2y3z 9 0

Câu 30 [TH]: Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) đi qua A(1;1;3) và chứa trục hoành có

phương trình là:

A 3y + z - 4 = 0 B x - y = 0 C 3y - z = 0 D x - 3y = 0

Câu 31 [TH]: Tính diện tích mặt cầu ngoại tiếp hình bát diện đều có cạnh bằng a.

A

2 2

3a

B

2 1

3a

C a2 D 2 a 2

Câu 32 [TH]: Cho (T) là vật thể nằm giữa hai mặt phẳng x = 0, x = 1 Tính thể tích V của (T) biết rằng

khi cắt (T) bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x, 0  x  1, ta được thiết diện là

tam giác đều có các cạnh bằng 1 x

A

3 2

B

3 3 8

C

3 3 8

D

3 2

Câu 33 [TH]: Cho hình lăng trụ đứng ABCD A 'B 'C 'D ' có ABCD là hình thoi cạnh a, góc giữa đường

thẳng A 'B và mặt phẳng (ABCD) bằng 600 Tính khoảng cách d giữa hai đường thẳng AC và B ' D '

A

3 3

B

1 2

C

3 2

D d  3a

Câu 34 [VD]: Một bác thợ gốm làm một cái lọ có dạng khối tròn xoay được tạo thành khi quay hình

phẳng giới hạn bởi các đường y = 1 x và trục Ox quay quanh Ox Biết đáy lọ và miệng lọ có đường

kính lần lượt là 2 dm và 4 dm , khi đó thể tích của lọ là:

A 8 dm3 B

15

2

14

3 

15

2 dm3

Trang 6

Câu 35 [TH]: Biết

3

0

ln 2 ln 3 3

, trong đó , ,a b c là các số nguyên Tính

T   a b c

A T =1 B T = 4 C T = 3 D T = 6

Câu 36 [VD]: Cho hàm số y = (x) xác định và liên tục trên  , thỏa mãn  5 

với

mọi x  Tích phân 8  

2

f x dx



bằng:

32

Câu 37 [VD]: Kết quả tính 2 lnxx1dx bằng:

A  2 1 ln  1 2

2

x

B  2 1 ln  1 2

2

x

C 2ln 1 2

2

x

D  2 1 ln  1 2

2

x

Câu 38 [TH]: Tính diện tích hình phẳng giới hạn bởi các đường

,

y x y   x

và trục hoành như hình vẽ

A.

7

56 3

C

39

11 6

Câu 39 [VD]: Cho tứ diện ABCD có (ACD)  (BCD), AC = AD = BC = BD = a, CD = 2x Giá trị của x

để hai mặt phẳng (ABC) và (ABD) vuông góc với nhau là:

A

2 3

a

B

3 3

a

C

3 2

a

D

5 3

a

Câu 40 [TH]: Cho hình chóp S.ABCD , mặt đáy ABCD là hình vuông có cạnh bằng a, phẳng (ABCD) và

SA = a Tính khoảng cách d từ điểm A đến mặt phẳng (SBC).

A

3 2

a

d

a

d

D

2 2

a

d

Câu 41 [VD]: Cho hàm số y x 33mx23m3 Biết rằng có hai giá trị của tham số m để đồ thị hàm số

có hai điểm cực trị A, B và tam giác OAB có diện tích bằng 48 Khi đó tổng hai giá trị của m là:

Câu 42 [VDC]: Cho hàm số y = (x) có đạo hàm y = f x' 

Hàm số y = f x' 

liên tục trên tập số thực  và có đồ thị như hình vẽ

Trang 7

Câu 43 [VDC]: Cho số phức z thỏa mãn điều kiện z    2 i z 2 3i 2 5 Tìm giá trị nhỏ nhất của

z

A. zmin  5

B min

4 5 5

C zmin  13

D zmin 2 5

Câu 44 [VD]: Cho các số thực x, y với x thỏa mãn 0 3 1   1

3

1

x y

e

Gọi m

là giá trị nhỏ nhất của biểu thức T = x + 2y +1 Mệnh đề nào sau đây đúng?

A m 2;3 B m  1;0 C m 0;1 D m 1;2

Câu 45 [VD]: Có bao nhiêu số tự nhiên có 30 chữ số, sao cho trong mỗi số chỉ có mặt hai chữ số 0 và 1,

đồng thời số chữ số 1 có mặt trong số tự nhiên đó là số lẻ?

Câu 46 [TH]: Cho f  4x dx x 23x C Mệnh đề nào dưới đây đúng?

4

x

C  2 2 4

4

x

2

x

Câu 47 [TH]: Cho hàm số y = (x) có đạo hàm    2    3 

Mệnh đề nào dưới đây

đúng?

A. f  1  f   2 f  2

B f  2  f  1  f  2

C f   2 f  2  f  1 D f   2 f  1  f  2

Câu 48 [VDC]: Cho hàm số yf x 

có đồ thị hàm số yf x'  như hình vẽ

Xét hàm số     8 3 2

x

f x

x

 

với m là tham số thực

Điều kiện cần và đủ để g x    0, x  0;1

là:

A.

 0 8

f

 0 8

f

C

 0 8

f

 0 8

f

Câu 49 [VD]: Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số

10 2

mx y

x m

 nghịch biến trên khoảng  0;2

Câu 50 [VD]: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm thuộc mặt phẳng

 P x: 2y z  7 0

và đi qua hai điểm A (1; 2;1), B (2;5;3) Bán kính nhỏ nhất của mặt cầu (S) bằng:

Trang 8

A

470

546

763

345 3

HƯỚNG DẪN GIẢI CHI TIẾT

Câu 1:

Phương pháp:

Giải bất phương trình mũ cơ bản

Cách giải:

Ta có: 23x3 22019 7 x3x 3 2019 7 x10x2016 x 201,6

Mà x nên x  {1; 2;3; ; 201}: có 201 số.

Chọn: A

Câu 2:

Phương pháp:

Để tìm GTNN, GTLN của hàm số f trên đoạn [a;b], ta làm như sau:

- Tìm các điểm x x1; ; ;2 x n thuộc khoảng [a;b] mà tại đó hàm số f có đạo hàm bằng 0 hoặc không có đạo

hàm

- Tính f x   1 ;f x2 ; ;f x     n ;f a f b;

- So sánh các giá trị vừa tìm được Số lớn nhất trong các giá trị đó chính là GTLN của f trên [a;b]; số nhỏ nhất trong các giá trị đó chính là GTNN của f trên [a;b].

Cách giải:

1

3

x

x

 

Hàm số y x 32x2 x 1 liên tục trên  , có:

 

 

max

f

f

  

   

Chọn: A

Vui lòng mua trọn bộ Đề 2019 với giá 300k

để xem đáp án và lời giải Liên hệ ĐT và Zalo O937.351.107

Ngày đăng: 24/01/2021, 01:26

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w